Step |
Hyp |
Ref |
Expression |
1 |
|
rrx2linest2.i |
⊢ 𝐼 = { 1 , 2 } |
2 |
|
rrx2linest2.e |
⊢ 𝐸 = ( ℝ^ ‘ 𝐼 ) |
3 |
|
rrx2linest2.p |
⊢ 𝑃 = ( ℝ ↑m 𝐼 ) |
4 |
|
rrx2linest2.l |
⊢ 𝐿 = ( LineM ‘ 𝐸 ) |
5 |
|
rrx2linest2.a |
⊢ 𝐴 = ( ( 𝑋 ‘ 2 ) − ( 𝑌 ‘ 2 ) ) |
6 |
|
rrx2linest2.b |
⊢ 𝐵 = ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) |
7 |
|
rrx2linest2.c |
⊢ 𝐶 = ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) |
8 |
1 2 3 4 5 6 7
|
rrx2linest2 |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 𝐿 𝑌 ) = { 𝑝 ∈ 𝑃 ∣ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 } ) |
9 |
8
|
eleq2d |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) → ( 𝐺 ∈ ( 𝑋 𝐿 𝑌 ) ↔ 𝐺 ∈ { 𝑝 ∈ 𝑃 ∣ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 } ) ) |
10 |
|
fveq1 |
⊢ ( 𝑝 = 𝐺 → ( 𝑝 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) |
11 |
10
|
oveq2d |
⊢ ( 𝑝 = 𝐺 → ( 𝐴 · ( 𝑝 ‘ 1 ) ) = ( 𝐴 · ( 𝐺 ‘ 1 ) ) ) |
12 |
|
fveq1 |
⊢ ( 𝑝 = 𝐺 → ( 𝑝 ‘ 2 ) = ( 𝐺 ‘ 2 ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝑝 = 𝐺 → ( 𝐵 · ( 𝑝 ‘ 2 ) ) = ( 𝐵 · ( 𝐺 ‘ 2 ) ) ) |
14 |
11 13
|
oveq12d |
⊢ ( 𝑝 = 𝐺 → ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = ( ( 𝐴 · ( 𝐺 ‘ 1 ) ) + ( 𝐵 · ( 𝐺 ‘ 2 ) ) ) ) |
15 |
14
|
eqeq1d |
⊢ ( 𝑝 = 𝐺 → ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( ( 𝐴 · ( 𝐺 ‘ 1 ) ) + ( 𝐵 · ( 𝐺 ‘ 2 ) ) ) = 𝐶 ) ) |
16 |
15
|
elrab |
⊢ ( 𝐺 ∈ { 𝑝 ∈ 𝑃 ∣ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 } ↔ ( 𝐺 ∈ 𝑃 ∧ ( ( 𝐴 · ( 𝐺 ‘ 1 ) ) + ( 𝐵 · ( 𝐺 ‘ 2 ) ) ) = 𝐶 ) ) |
17 |
9 16
|
bitrdi |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) → ( 𝐺 ∈ ( 𝑋 𝐿 𝑌 ) ↔ ( 𝐺 ∈ 𝑃 ∧ ( ( 𝐴 · ( 𝐺 ‘ 1 ) ) + ( 𝐵 · ( 𝐺 ‘ 2 ) ) ) = 𝐶 ) ) ) |