Metamath Proof Explorer


Theorem elrrx2linest2

Description: The line passing through the two different points X and Y in a real Euclidean space of dimension 2 in another "standard form" (usually with ( p1 ) = x and ( p2 ) = y ). (Contributed by AV, 23-Feb-2023)

Ref Expression
Hypotheses rrx2linest2.i 𝐼 = { 1 , 2 }
rrx2linest2.e 𝐸 = ( ℝ^ ‘ 𝐼 )
rrx2linest2.p 𝑃 = ( ℝ ↑m 𝐼 )
rrx2linest2.l 𝐿 = ( LineM𝐸 )
rrx2linest2.a 𝐴 = ( ( 𝑋 ‘ 2 ) − ( 𝑌 ‘ 2 ) )
rrx2linest2.b 𝐵 = ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) )
rrx2linest2.c 𝐶 = ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) )
Assertion elrrx2linest2 ( ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) → ( 𝐺 ∈ ( 𝑋 𝐿 𝑌 ) ↔ ( 𝐺𝑃 ∧ ( ( 𝐴 · ( 𝐺 ‘ 1 ) ) + ( 𝐵 · ( 𝐺 ‘ 2 ) ) ) = 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 rrx2linest2.i 𝐼 = { 1 , 2 }
2 rrx2linest2.e 𝐸 = ( ℝ^ ‘ 𝐼 )
3 rrx2linest2.p 𝑃 = ( ℝ ↑m 𝐼 )
4 rrx2linest2.l 𝐿 = ( LineM𝐸 )
5 rrx2linest2.a 𝐴 = ( ( 𝑋 ‘ 2 ) − ( 𝑌 ‘ 2 ) )
6 rrx2linest2.b 𝐵 = ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) )
7 rrx2linest2.c 𝐶 = ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) )
8 1 2 3 4 5 6 7 rrx2linest2 ( ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) → ( 𝑋 𝐿 𝑌 ) = { 𝑝𝑃 ∣ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 } )
9 8 eleq2d ( ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) → ( 𝐺 ∈ ( 𝑋 𝐿 𝑌 ) ↔ 𝐺 ∈ { 𝑝𝑃 ∣ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 } ) )
10 fveq1 ( 𝑝 = 𝐺 → ( 𝑝 ‘ 1 ) = ( 𝐺 ‘ 1 ) )
11 10 oveq2d ( 𝑝 = 𝐺 → ( 𝐴 · ( 𝑝 ‘ 1 ) ) = ( 𝐴 · ( 𝐺 ‘ 1 ) ) )
12 fveq1 ( 𝑝 = 𝐺 → ( 𝑝 ‘ 2 ) = ( 𝐺 ‘ 2 ) )
13 12 oveq2d ( 𝑝 = 𝐺 → ( 𝐵 · ( 𝑝 ‘ 2 ) ) = ( 𝐵 · ( 𝐺 ‘ 2 ) ) )
14 11 13 oveq12d ( 𝑝 = 𝐺 → ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = ( ( 𝐴 · ( 𝐺 ‘ 1 ) ) + ( 𝐵 · ( 𝐺 ‘ 2 ) ) ) )
15 14 eqeq1d ( 𝑝 = 𝐺 → ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( ( 𝐴 · ( 𝐺 ‘ 1 ) ) + ( 𝐵 · ( 𝐺 ‘ 2 ) ) ) = 𝐶 ) )
16 15 elrab ( 𝐺 ∈ { 𝑝𝑃 ∣ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 } ↔ ( 𝐺𝑃 ∧ ( ( 𝐴 · ( 𝐺 ‘ 1 ) ) + ( 𝐵 · ( 𝐺 ‘ 2 ) ) ) = 𝐶 ) )
17 9 16 bitrdi ( ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) → ( 𝐺 ∈ ( 𝑋 𝐿 𝑌 ) ↔ ( 𝐺𝑃 ∧ ( ( 𝐴 · ( 𝐺 ‘ 1 ) ) + ( 𝐵 · ( 𝐺 ‘ 2 ) ) ) = 𝐶 ) ) )