| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqelbid.1 |
|- ( ph -> B e. A ) |
| 2 |
|
eqelbid.2 |
|- ( ph -> C e. A ) |
| 3 |
|
eqeq1 |
|- ( x = B -> ( x = B <-> B = B ) ) |
| 4 |
|
eqeq1 |
|- ( x = B -> ( x = C <-> B = C ) ) |
| 5 |
3 4
|
bibi12d |
|- ( x = B -> ( ( x = B <-> x = C ) <-> ( B = B <-> B = C ) ) ) |
| 6 |
|
eqid |
|- B = B |
| 7 |
6
|
tbt |
|- ( B = C <-> ( B = C <-> B = B ) ) |
| 8 |
|
bicom |
|- ( ( B = C <-> B = B ) <-> ( B = B <-> B = C ) ) |
| 9 |
7 8
|
bitri |
|- ( B = C <-> ( B = B <-> B = C ) ) |
| 10 |
5 9
|
bitr4di |
|- ( x = B -> ( ( x = B <-> x = C ) <-> B = C ) ) |
| 11 |
|
simpr |
|- ( ( ph /\ A. x e. A ( x = B <-> x = C ) ) -> A. x e. A ( x = B <-> x = C ) ) |
| 12 |
1
|
adantr |
|- ( ( ph /\ A. x e. A ( x = B <-> x = C ) ) -> B e. A ) |
| 13 |
10 11 12
|
rspcdva |
|- ( ( ph /\ A. x e. A ( x = B <-> x = C ) ) -> B = C ) |
| 14 |
|
simplr |
|- ( ( ( ph /\ B = C ) /\ x e. A ) -> B = C ) |
| 15 |
14
|
eqeq2d |
|- ( ( ( ph /\ B = C ) /\ x e. A ) -> ( x = B <-> x = C ) ) |
| 16 |
15
|
ralrimiva |
|- ( ( ph /\ B = C ) -> A. x e. A ( x = B <-> x = C ) ) |
| 17 |
13 16
|
impbida |
|- ( ph -> ( A. x e. A ( x = B <-> x = C ) <-> B = C ) ) |