Step |
Hyp |
Ref |
Expression |
1 |
|
eqelbid.1 |
|- ( ph -> B e. A ) |
2 |
|
eqelbid.2 |
|- ( ph -> C e. A ) |
3 |
|
eqeq1 |
|- ( x = B -> ( x = B <-> B = B ) ) |
4 |
|
eqeq1 |
|- ( x = B -> ( x = C <-> B = C ) ) |
5 |
3 4
|
bibi12d |
|- ( x = B -> ( ( x = B <-> x = C ) <-> ( B = B <-> B = C ) ) ) |
6 |
|
eqid |
|- B = B |
7 |
6
|
tbt |
|- ( B = C <-> ( B = C <-> B = B ) ) |
8 |
|
bicom |
|- ( ( B = C <-> B = B ) <-> ( B = B <-> B = C ) ) |
9 |
7 8
|
bitri |
|- ( B = C <-> ( B = B <-> B = C ) ) |
10 |
5 9
|
bitr4di |
|- ( x = B -> ( ( x = B <-> x = C ) <-> B = C ) ) |
11 |
|
simpr |
|- ( ( ph /\ A. x e. A ( x = B <-> x = C ) ) -> A. x e. A ( x = B <-> x = C ) ) |
12 |
1
|
adantr |
|- ( ( ph /\ A. x e. A ( x = B <-> x = C ) ) -> B e. A ) |
13 |
10 11 12
|
rspcdva |
|- ( ( ph /\ A. x e. A ( x = B <-> x = C ) ) -> B = C ) |
14 |
|
simplr |
|- ( ( ( ph /\ B = C ) /\ x e. A ) -> B = C ) |
15 |
14
|
eqeq2d |
|- ( ( ( ph /\ B = C ) /\ x e. A ) -> ( x = B <-> x = C ) ) |
16 |
15
|
ralrimiva |
|- ( ( ph /\ B = C ) -> A. x e. A ( x = B <-> x = C ) ) |
17 |
13 16
|
impbida |
|- ( ph -> ( A. x e. A ( x = B <-> x = C ) <-> B = C ) ) |