Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpart.p |
|- P = { f e. ( NN0 ^m NN ) | ( ( `' f " NN ) e. Fin /\ sum_ k e. NN ( ( f ` k ) x. k ) = N ) } |
2 |
|
eulerpart.o |
|- O = { g e. P | A. n e. ( `' g " NN ) -. 2 || n } |
3 |
|
eulerpart.d |
|- D = { g e. P | A. n e. NN ( g ` n ) <_ 1 } |
4 |
|
eulerpart.j |
|- J = { z e. NN | -. 2 || z } |
5 |
|
eulerpart.f |
|- F = ( x e. J , y e. NN0 |-> ( ( 2 ^ y ) x. x ) ) |
6 |
|
eulerpart.h |
|- H = { r e. ( ( ~P NN0 i^i Fin ) ^m J ) | ( r supp (/) ) e. Fin } |
7 |
|
eulerpart.m |
|- M = ( r e. H |-> { <. x , y >. | ( x e. J /\ y e. ( r ` x ) ) } ) |
8 |
|
eulerpart.r |
|- R = { f | ( `' f " NN ) e. Fin } |
9 |
|
eulerpart.t |
|- T = { f e. ( NN0 ^m NN ) | ( `' f " NN ) C_ J } |
10 |
|
eulerpart.g |
|- G = ( o e. ( T i^i R ) |-> ( ( _Ind ` NN ) ` ( F " ( M ` ( bits o. ( o |` J ) ) ) ) ) ) |
11 |
|
reseq1 |
|- ( o = A -> ( o |` J ) = ( A |` J ) ) |
12 |
11
|
coeq2d |
|- ( o = A -> ( bits o. ( o |` J ) ) = ( bits o. ( A |` J ) ) ) |
13 |
12
|
fveq2d |
|- ( o = A -> ( M ` ( bits o. ( o |` J ) ) ) = ( M ` ( bits o. ( A |` J ) ) ) ) |
14 |
13
|
imaeq2d |
|- ( o = A -> ( F " ( M ` ( bits o. ( o |` J ) ) ) ) = ( F " ( M ` ( bits o. ( A |` J ) ) ) ) ) |
15 |
14
|
fveq2d |
|- ( o = A -> ( ( _Ind ` NN ) ` ( F " ( M ` ( bits o. ( o |` J ) ) ) ) ) = ( ( _Ind ` NN ) ` ( F " ( M ` ( bits o. ( A |` J ) ) ) ) ) ) |
16 |
|
fvex |
|- ( ( _Ind ` NN ) ` ( F " ( M ` ( bits o. ( A |` J ) ) ) ) ) e. _V |
17 |
15 10 16
|
fvmpt |
|- ( A e. ( T i^i R ) -> ( G ` A ) = ( ( _Ind ` NN ) ` ( F " ( M ` ( bits o. ( A |` J ) ) ) ) ) ) |