Metamath Proof Explorer


Theorem eulerpartlemgv

Description: Lemma for eulerpart : value of the function G . (Contributed by Thierry Arnoux, 13-Nov-2017)

Ref Expression
Hypotheses eulerpart.p P=f0|f-1Finkfkk=N
eulerpart.o O=gP|ng-1¬2n
eulerpart.d D=gP|ngn1
eulerpart.j J=z|¬2z
eulerpart.f F=xJ,y02yx
eulerpart.h H=r𝒫0FinJ|rsuppFin
eulerpart.m M=rHxy|xJyrx
eulerpart.r R=f|f-1Fin
eulerpart.t T=f0|f-1J
eulerpart.g G=oTR𝟙FMbitsoJ
Assertion eulerpartlemgv ATRGA=𝟙FMbitsAJ

Proof

Step Hyp Ref Expression
1 eulerpart.p P=f0|f-1Finkfkk=N
2 eulerpart.o O=gP|ng-1¬2n
3 eulerpart.d D=gP|ngn1
4 eulerpart.j J=z|¬2z
5 eulerpart.f F=xJ,y02yx
6 eulerpart.h H=r𝒫0FinJ|rsuppFin
7 eulerpart.m M=rHxy|xJyrx
8 eulerpart.r R=f|f-1Fin
9 eulerpart.t T=f0|f-1J
10 eulerpart.g G=oTR𝟙FMbitsoJ
11 reseq1 o=AoJ=AJ
12 11 coeq2d o=AbitsoJ=bitsAJ
13 12 fveq2d o=AMbitsoJ=MbitsAJ
14 13 imaeq2d o=AFMbitsoJ=FMbitsAJ
15 14 fveq2d o=A𝟙FMbitsoJ=𝟙FMbitsAJ
16 fvex 𝟙FMbitsAJV
17 15 10 16 fvmpt ATRGA=𝟙FMbitsAJ