Metamath Proof Explorer


Theorem eulerpartlemr

Description: Lemma for eulerpart . (Contributed by Thierry Arnoux, 13-Nov-2017)

Ref Expression
Hypotheses eulerpart.p P=f0|f-1Finkfkk=N
eulerpart.o O=gP|ng-1¬2n
eulerpart.d D=gP|ngn1
eulerpart.j J=z|¬2z
eulerpart.f F=xJ,y02yx
eulerpart.h H=r𝒫0FinJ|rsuppFin
eulerpart.m M=rHxy|xJyrx
eulerpart.r R=f|f-1Fin
eulerpart.t T=f0|f-1J
eulerpart.g G=oTR𝟙FMbitsoJ
Assertion eulerpartlemr O=TRP

Proof

Step Hyp Ref Expression
1 eulerpart.p P=f0|f-1Finkfkk=N
2 eulerpart.o O=gP|ng-1¬2n
3 eulerpart.d D=gP|ngn1
4 eulerpart.j J=z|¬2z
5 eulerpart.f F=xJ,y02yx
6 eulerpart.h H=r𝒫0FinJ|rsuppFin
7 eulerpart.m M=rHxy|xJyrx
8 eulerpart.r R=f|f-1Fin
9 eulerpart.t T=f0|f-1J
10 eulerpart.g G=oTR𝟙FMbitsoJ
11 elin hTRhThR
12 11 anbi1i hTRhPhThRhP
13 elin hTRPhTRhP
14 1 2 3 eulerpartlemo hOhPnh-1¬2n
15 cnveq f=hf-1=h-1
16 15 imaeq1d f=hf-1=h-1
17 16 eleq1d f=hf-1Finh-1Fin
18 fveq1 f=hfk=hk
19 18 oveq1d f=hfkk=hkk
20 19 sumeq2sdv f=hkfkk=khkk
21 20 eqeq1d f=hkfkk=Nkhkk=N
22 17 21 anbi12d f=hf-1Finkfkk=Nh-1Finkhkk=N
23 22 1 elrab2 hPh0h-1Finkhkk=N
24 23 simplbi hPh0
25 cnvimass h-1domh
26 nn0ex 0V
27 nnex V
28 26 27 elmap h0h:0
29 fdm h:0domh=
30 28 29 sylbi h0domh=
31 25 30 sseqtrid h0h-1
32 24 31 syl hPh-1
33 32 sselda hPnh-1n
34 33 ralrimiva hPnh-1n
35 34 biantrurd hPnh-1¬2nnh-1nnh-1¬2n
36 24 biantrurd hPnh-1nnh-1¬2nh0nh-1nnh-1¬2n
37 23 simprbi hPh-1Finkhkk=N
38 37 simpld hPh-1Fin
39 38 biantrud hPh0nh-1nnh-1¬2nh0nh-1nnh-1¬2nh-1Fin
40 35 36 39 3bitrd hPnh-1¬2nh0nh-1nnh-1¬2nh-1Fin
41 dfss3 h-1Jnh-1nJ
42 breq2 z=n2z2n
43 42 notbid z=n¬2z¬2n
44 43 4 elrab2 nJn¬2n
45 44 ralbii nh-1nJnh-1n¬2n
46 r19.26 nh-1n¬2nnh-1nnh-1¬2n
47 41 45 46 3bitri h-1Jnh-1nnh-1¬2n
48 47 anbi2i h0h-1Jh0nh-1nnh-1¬2n
49 48 anbi1i h0h-1Jh-1Finh0nh-1nnh-1¬2nh-1Fin
50 40 49 bitr4di hPnh-1¬2nh0h-1Jh-1Fin
51 16 sseq1d f=hf-1Jh-1J
52 51 9 elrab2 hTh0h-1J
53 vex hV
54 53 17 8 elab2 hRh-1Fin
55 52 54 anbi12i hThRh0h-1Jh-1Fin
56 50 55 bitr4di hPnh-1¬2nhThR
57 56 pm5.32i hPnh-1¬2nhPhThR
58 ancom hPhThRhThRhP
59 14 57 58 3bitri hOhThRhP
60 12 13 59 3bitr4ri hOhTRP
61 60 eqriv O=TRP