Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpart.p |
⊢ 𝑃 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) } |
2 |
|
eulerpart.o |
⊢ 𝑂 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 } |
3 |
|
eulerpart.d |
⊢ 𝐷 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ≤ 1 } |
4 |
|
eulerpart.j |
⊢ 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } |
5 |
|
eulerpart.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
6 |
|
eulerpart.h |
⊢ 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } |
7 |
|
eulerpart.m |
⊢ 𝑀 = ( 𝑟 ∈ 𝐻 ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) |
8 |
|
eulerpart.r |
⊢ 𝑅 = { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
9 |
|
eulerpart.t |
⊢ 𝑇 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ 𝑓 “ ℕ ) ⊆ 𝐽 } |
10 |
|
eulerpart.g |
⊢ 𝐺 = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) |
11 |
|
reseq1 |
⊢ ( 𝑜 = 𝐴 → ( 𝑜 ↾ 𝐽 ) = ( 𝐴 ↾ 𝐽 ) ) |
12 |
11
|
coeq2d |
⊢ ( 𝑜 = 𝐴 → ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) = ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) |
13 |
12
|
fveq2d |
⊢ ( 𝑜 = 𝐴 → ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) = ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) |
14 |
13
|
imaeq2d |
⊢ ( 𝑜 = 𝐴 → ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) = ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ) |
15 |
14
|
fveq2d |
⊢ ( 𝑜 = 𝐴 → ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ) ) |
16 |
|
fvex |
⊢ ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ) ∈ V |
17 |
15 10 16
|
fvmpt |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝐺 ‘ 𝐴 ) = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ) ) |