Metamath Proof Explorer


Theorem exdifsn

Description: There exists an element in a class excluding a singleton if and only if there exists an element in the original class not equal to the singleton element. (Contributed by BTernaryTau, 15-Sep-2023)

Ref Expression
Assertion exdifsn
|- ( E. x x e. ( A \ { B } ) <-> E. x e. A x =/= B )

Proof

Step Hyp Ref Expression
1 eldifsn
 |-  ( x e. ( A \ { B } ) <-> ( x e. A /\ x =/= B ) )
2 1 exbii
 |-  ( E. x x e. ( A \ { B } ) <-> E. x ( x e. A /\ x =/= B ) )
3 df-rex
 |-  ( E. x e. A x =/= B <-> E. x ( x e. A /\ x =/= B ) )
4 2 3 bitr4i
 |-  ( E. x x e. ( A \ { B } ) <-> E. x e. A x =/= B )