Description: There exists an element in a class excluding a singleton if and only if there exists an element in the original class not equal to the singleton element. (Contributed by BTernaryTau, 15-Sep-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | exdifsn | |- ( E. x x e. ( A \ { B } ) <-> E. x e. A x =/= B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn | |- ( x e. ( A \ { B } ) <-> ( x e. A /\ x =/= B ) ) |
|
2 | 1 | exbii | |- ( E. x x e. ( A \ { B } ) <-> E. x ( x e. A /\ x =/= B ) ) |
3 | df-rex | |- ( E. x e. A x =/= B <-> E. x ( x e. A /\ x =/= B ) ) |
|
4 | 2 3 | bitr4i | |- ( E. x x e. ( A \ { B } ) <-> E. x e. A x =/= B ) |