Description: There exists an element in a class excluding a singleton if and only if there exists an element in the original class not equal to the singleton element. (Contributed by BTernaryTau, 15-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exdifsn | |- ( E. x x e. ( A \ { B } ) <-> E. x e. A x =/= B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn | |- ( x e. ( A \ { B } ) <-> ( x e. A /\ x =/= B ) ) |
|
| 2 | 1 | exbii | |- ( E. x x e. ( A \ { B } ) <-> E. x ( x e. A /\ x =/= B ) ) |
| 3 | df-rex | |- ( E. x e. A x =/= B <-> E. x ( x e. A /\ x =/= B ) ) |
|
| 4 | 2 3 | bitr4i | |- ( E. x x e. ( A \ { B } ) <-> E. x e. A x =/= B ) |