Description: There exists an element in a class excluding a singleton if and only if there exists an element in the original class not equal to the singleton element. (Contributed by BTernaryTau, 15-Sep-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | exdifsn | ⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↔ ∃ 𝑥 ∈ 𝐴 𝑥 ≠ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ) ) | |
2 | 1 | exbii | ⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ) ) |
3 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 ≠ 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ) ) | |
4 | 2 3 | bitr4i | ⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↔ ∃ 𝑥 ∈ 𝐴 𝑥 ≠ 𝐵 ) |