Metamath Proof Explorer


Theorem exdifsn

Description: There exists an element in a class excluding a singleton if and only if there exists an element in the original class not equal to the singleton element. (Contributed by BTernaryTau, 15-Sep-2023)

Ref Expression
Assertion exdifsn ( ∃ 𝑥 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↔ ∃ 𝑥𝐴 𝑥𝐵 )

Proof

Step Hyp Ref Expression
1 eldifsn ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
2 1 exbii ( ∃ 𝑥 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↔ ∃ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
3 df-rex ( ∃ 𝑥𝐴 𝑥𝐵 ↔ ∃ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
4 2 3 bitr4i ( ∃ 𝑥 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↔ ∃ 𝑥𝐴 𝑥𝐵 )