Description: There exists an element in a class excluding a singleton if and only if there exists an element in the original class not equal to the singleton element. (Contributed by BTernaryTau, 15-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exdifsn | ⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↔ ∃ 𝑥 ∈ 𝐴 𝑥 ≠ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ) ) | |
| 2 | 1 | exbii | ⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ) ) |
| 3 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 ≠ 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ) ) | |
| 4 | 2 3 | bitr4i | ⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↔ ∃ 𝑥 ∈ 𝐴 𝑥 ≠ 𝐵 ) |