| Step | Hyp | Ref | Expression | 
						
							| 1 |  | exidcl.1 |  |-  X = ran G | 
						
							| 2 |  | rngopidOLD |  |-  ( G e. ( Magma i^i ExId ) -> ran G = dom dom G ) | 
						
							| 3 | 1 2 | eqtrid |  |-  ( G e. ( Magma i^i ExId ) -> X = dom dom G ) | 
						
							| 4 | 3 | eleq2d |  |-  ( G e. ( Magma i^i ExId ) -> ( A e. X <-> A e. dom dom G ) ) | 
						
							| 5 | 3 | eleq2d |  |-  ( G e. ( Magma i^i ExId ) -> ( B e. X <-> B e. dom dom G ) ) | 
						
							| 6 | 4 5 | anbi12d |  |-  ( G e. ( Magma i^i ExId ) -> ( ( A e. X /\ B e. X ) <-> ( A e. dom dom G /\ B e. dom dom G ) ) ) | 
						
							| 7 | 6 | pm5.32i |  |-  ( ( G e. ( Magma i^i ExId ) /\ ( A e. X /\ B e. X ) ) <-> ( G e. ( Magma i^i ExId ) /\ ( A e. dom dom G /\ B e. dom dom G ) ) ) | 
						
							| 8 |  | inss1 |  |-  ( Magma i^i ExId ) C_ Magma | 
						
							| 9 | 8 | sseli |  |-  ( G e. ( Magma i^i ExId ) -> G e. Magma ) | 
						
							| 10 |  | eqid |  |-  dom dom G = dom dom G | 
						
							| 11 | 10 | clmgmOLD |  |-  ( ( G e. Magma /\ A e. dom dom G /\ B e. dom dom G ) -> ( A G B ) e. dom dom G ) | 
						
							| 12 | 9 11 | syl3an1 |  |-  ( ( G e. ( Magma i^i ExId ) /\ A e. dom dom G /\ B e. dom dom G ) -> ( A G B ) e. dom dom G ) | 
						
							| 13 | 12 | 3expb |  |-  ( ( G e. ( Magma i^i ExId ) /\ ( A e. dom dom G /\ B e. dom dom G ) ) -> ( A G B ) e. dom dom G ) | 
						
							| 14 | 7 13 | sylbi |  |-  ( ( G e. ( Magma i^i ExId ) /\ ( A e. X /\ B e. X ) ) -> ( A G B ) e. dom dom G ) | 
						
							| 15 | 14 | 3impb |  |-  ( ( G e. ( Magma i^i ExId ) /\ A e. X /\ B e. X ) -> ( A G B ) e. dom dom G ) | 
						
							| 16 | 3 | 3ad2ant1 |  |-  ( ( G e. ( Magma i^i ExId ) /\ A e. X /\ B e. X ) -> X = dom dom G ) | 
						
							| 17 | 15 16 | eleqtrrd |  |-  ( ( G e. ( Magma i^i ExId ) /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |