Metamath Proof Explorer


Theorem exidcl

Description: Closure of the binary operation of a magma with identity. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Hypothesis exidcl.1 X=ranG
Assertion exidcl GMagmaExIdAXBXAGBX

Proof

Step Hyp Ref Expression
1 exidcl.1 X=ranG
2 rngopidOLD GMagmaExIdranG=domdomG
3 1 2 eqtrid GMagmaExIdX=domdomG
4 3 eleq2d GMagmaExIdAXAdomdomG
5 3 eleq2d GMagmaExIdBXBdomdomG
6 4 5 anbi12d GMagmaExIdAXBXAdomdomGBdomdomG
7 6 pm5.32i GMagmaExIdAXBXGMagmaExIdAdomdomGBdomdomG
8 inss1 MagmaExIdMagma
9 8 sseli GMagmaExIdGMagma
10 eqid domdomG=domdomG
11 10 clmgmOLD GMagmaAdomdomGBdomdomGAGBdomdomG
12 9 11 syl3an1 GMagmaExIdAdomdomGBdomdomGAGBdomdomG
13 12 3expb GMagmaExIdAdomdomGBdomdomGAGBdomdomG
14 7 13 sylbi GMagmaExIdAXBXAGBdomdomG
15 14 3impb GMagmaExIdAXBXAGBdomdomG
16 3 3ad2ant1 GMagmaExIdAXBXX=domdomG
17 15 16 eleqtrrd GMagmaExIdAXBXAGBX