Step |
Hyp |
Ref |
Expression |
1 |
|
nn0le2is012 |
|- ( ( N e. NN0 /\ N <_ 2 ) -> ( N = 0 \/ N = 1 \/ N = 2 ) ) |
2 |
|
id |
|- ( N = 0 -> N = 0 ) |
3 |
2 2
|
oveq12d |
|- ( N = 0 -> ( N ^ N ) = ( 0 ^ 0 ) ) |
4 |
|
0exp0e1 |
|- ( 0 ^ 0 ) = 1 |
5 |
|
1lt6 |
|- 1 < 6 |
6 |
4 5
|
eqbrtri |
|- ( 0 ^ 0 ) < 6 |
7 |
3 6
|
eqbrtrdi |
|- ( N = 0 -> ( N ^ N ) < 6 ) |
8 |
|
id |
|- ( N = 1 -> N = 1 ) |
9 |
8 8
|
oveq12d |
|- ( N = 1 -> ( N ^ N ) = ( 1 ^ 1 ) ) |
10 |
|
ax-1cn |
|- 1 e. CC |
11 |
|
exp1 |
|- ( 1 e. CC -> ( 1 ^ 1 ) = 1 ) |
12 |
10 11
|
ax-mp |
|- ( 1 ^ 1 ) = 1 |
13 |
12 5
|
eqbrtri |
|- ( 1 ^ 1 ) < 6 |
14 |
9 13
|
eqbrtrdi |
|- ( N = 1 -> ( N ^ N ) < 6 ) |
15 |
|
id |
|- ( N = 2 -> N = 2 ) |
16 |
15 15
|
oveq12d |
|- ( N = 2 -> ( N ^ N ) = ( 2 ^ 2 ) ) |
17 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
18 |
|
4lt6 |
|- 4 < 6 |
19 |
17 18
|
eqbrtri |
|- ( 2 ^ 2 ) < 6 |
20 |
16 19
|
eqbrtrdi |
|- ( N = 2 -> ( N ^ N ) < 6 ) |
21 |
7 14 20
|
3jaoi |
|- ( ( N = 0 \/ N = 1 \/ N = 2 ) -> ( N ^ N ) < 6 ) |
22 |
1 21
|
syl |
|- ( ( N e. NN0 /\ N <_ 2 ) -> ( N ^ N ) < 6 ) |