| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0le2is012 |
|- ( ( N e. NN0 /\ N <_ 2 ) -> ( N = 0 \/ N = 1 \/ N = 2 ) ) |
| 2 |
|
id |
|- ( N = 0 -> N = 0 ) |
| 3 |
2 2
|
oveq12d |
|- ( N = 0 -> ( N ^ N ) = ( 0 ^ 0 ) ) |
| 4 |
|
0exp0e1 |
|- ( 0 ^ 0 ) = 1 |
| 5 |
|
1lt6 |
|- 1 < 6 |
| 6 |
4 5
|
eqbrtri |
|- ( 0 ^ 0 ) < 6 |
| 7 |
3 6
|
eqbrtrdi |
|- ( N = 0 -> ( N ^ N ) < 6 ) |
| 8 |
|
id |
|- ( N = 1 -> N = 1 ) |
| 9 |
8 8
|
oveq12d |
|- ( N = 1 -> ( N ^ N ) = ( 1 ^ 1 ) ) |
| 10 |
|
ax-1cn |
|- 1 e. CC |
| 11 |
|
exp1 |
|- ( 1 e. CC -> ( 1 ^ 1 ) = 1 ) |
| 12 |
10 11
|
ax-mp |
|- ( 1 ^ 1 ) = 1 |
| 13 |
12 5
|
eqbrtri |
|- ( 1 ^ 1 ) < 6 |
| 14 |
9 13
|
eqbrtrdi |
|- ( N = 1 -> ( N ^ N ) < 6 ) |
| 15 |
|
id |
|- ( N = 2 -> N = 2 ) |
| 16 |
15 15
|
oveq12d |
|- ( N = 2 -> ( N ^ N ) = ( 2 ^ 2 ) ) |
| 17 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
| 18 |
|
4lt6 |
|- 4 < 6 |
| 19 |
17 18
|
eqbrtri |
|- ( 2 ^ 2 ) < 6 |
| 20 |
16 19
|
eqbrtrdi |
|- ( N = 2 -> ( N ^ N ) < 6 ) |
| 21 |
7 14 20
|
3jaoi |
|- ( ( N = 0 \/ N = 1 \/ N = 2 ) -> ( N ^ N ) < 6 ) |
| 22 |
1 21
|
syl |
|- ( ( N e. NN0 /\ N <_ 2 ) -> ( N ^ N ) < 6 ) |