| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgrple2abl.g |
|- G = ( SymGrp ` A ) |
| 2 |
1
|
symggrp |
|- ( A e. V -> G e. Grp ) |
| 3 |
2
|
adantr |
|- ( ( A e. V /\ ( # ` A ) <_ 2 ) -> G e. Grp ) |
| 4 |
|
2nn0 |
|- 2 e. NN0 |
| 5 |
|
hashbnd |
|- ( ( A e. V /\ 2 e. NN0 /\ ( # ` A ) <_ 2 ) -> A e. Fin ) |
| 6 |
4 5
|
mp3an2 |
|- ( ( A e. V /\ ( # ` A ) <_ 2 ) -> A e. Fin ) |
| 7 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 8 |
1 7
|
symghash |
|- ( A e. Fin -> ( # ` ( Base ` G ) ) = ( ! ` ( # ` A ) ) ) |
| 9 |
6 8
|
syl |
|- ( ( A e. V /\ ( # ` A ) <_ 2 ) -> ( # ` ( Base ` G ) ) = ( ! ` ( # ` A ) ) ) |
| 10 |
|
hashcl |
|- ( A e. Fin -> ( # ` A ) e. NN0 ) |
| 11 |
6 10
|
syl |
|- ( ( A e. V /\ ( # ` A ) <_ 2 ) -> ( # ` A ) e. NN0 ) |
| 12 |
|
faccl |
|- ( ( # ` A ) e. NN0 -> ( ! ` ( # ` A ) ) e. NN ) |
| 13 |
11 12
|
syl |
|- ( ( A e. V /\ ( # ` A ) <_ 2 ) -> ( ! ` ( # ` A ) ) e. NN ) |
| 14 |
13
|
nnred |
|- ( ( A e. V /\ ( # ` A ) <_ 2 ) -> ( ! ` ( # ` A ) ) e. RR ) |
| 15 |
11 11
|
nn0expcld |
|- ( ( A e. V /\ ( # ` A ) <_ 2 ) -> ( ( # ` A ) ^ ( # ` A ) ) e. NN0 ) |
| 16 |
15
|
nn0red |
|- ( ( A e. V /\ ( # ` A ) <_ 2 ) -> ( ( # ` A ) ^ ( # ` A ) ) e. RR ) |
| 17 |
|
6re |
|- 6 e. RR |
| 18 |
17
|
a1i |
|- ( ( A e. V /\ ( # ` A ) <_ 2 ) -> 6 e. RR ) |
| 19 |
|
facubnd |
|- ( ( # ` A ) e. NN0 -> ( ! ` ( # ` A ) ) <_ ( ( # ` A ) ^ ( # ` A ) ) ) |
| 20 |
11 19
|
syl |
|- ( ( A e. V /\ ( # ` A ) <_ 2 ) -> ( ! ` ( # ` A ) ) <_ ( ( # ` A ) ^ ( # ` A ) ) ) |
| 21 |
|
exple2lt6 |
|- ( ( ( # ` A ) e. NN0 /\ ( # ` A ) <_ 2 ) -> ( ( # ` A ) ^ ( # ` A ) ) < 6 ) |
| 22 |
11 21
|
sylancom |
|- ( ( A e. V /\ ( # ` A ) <_ 2 ) -> ( ( # ` A ) ^ ( # ` A ) ) < 6 ) |
| 23 |
14 16 18 20 22
|
lelttrd |
|- ( ( A e. V /\ ( # ` A ) <_ 2 ) -> ( ! ` ( # ` A ) ) < 6 ) |
| 24 |
9 23
|
eqbrtrd |
|- ( ( A e. V /\ ( # ` A ) <_ 2 ) -> ( # ` ( Base ` G ) ) < 6 ) |
| 25 |
7
|
lt6abl |
|- ( ( G e. Grp /\ ( # ` ( Base ` G ) ) < 6 ) -> G e. Abel ) |
| 26 |
3 24 25
|
syl2anc |
|- ( ( A e. V /\ ( # ` A ) <_ 2 ) -> G e. Abel ) |