| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cygctb.1 |  |-  B = ( Base ` G ) | 
						
							| 2 | 1 | grpbn0 |  |-  ( G e. Grp -> B =/= (/) ) | 
						
							| 3 | 2 | adantr |  |-  ( ( G e. Grp /\ ( # ` B ) < 6 ) -> B =/= (/) ) | 
						
							| 4 |  | 6re |  |-  6 e. RR | 
						
							| 5 |  | rexr |  |-  ( 6 e. RR -> 6 e. RR* ) | 
						
							| 6 |  | pnfnlt |  |-  ( 6 e. RR* -> -. +oo < 6 ) | 
						
							| 7 | 4 5 6 | mp2b |  |-  -. +oo < 6 | 
						
							| 8 | 1 | fvexi |  |-  B e. _V | 
						
							| 9 | 8 | a1i |  |-  ( G e. Grp -> B e. _V ) | 
						
							| 10 |  | hashinf |  |-  ( ( B e. _V /\ -. B e. Fin ) -> ( # ` B ) = +oo ) | 
						
							| 11 | 9 10 | sylan |  |-  ( ( G e. Grp /\ -. B e. Fin ) -> ( # ` B ) = +oo ) | 
						
							| 12 | 11 | breq1d |  |-  ( ( G e. Grp /\ -. B e. Fin ) -> ( ( # ` B ) < 6 <-> +oo < 6 ) ) | 
						
							| 13 | 12 | biimpd |  |-  ( ( G e. Grp /\ -. B e. Fin ) -> ( ( # ` B ) < 6 -> +oo < 6 ) ) | 
						
							| 14 | 13 | impancom |  |-  ( ( G e. Grp /\ ( # ` B ) < 6 ) -> ( -. B e. Fin -> +oo < 6 ) ) | 
						
							| 15 | 7 14 | mt3i |  |-  ( ( G e. Grp /\ ( # ` B ) < 6 ) -> B e. Fin ) | 
						
							| 16 |  | hashnncl |  |-  ( B e. Fin -> ( ( # ` B ) e. NN <-> B =/= (/) ) ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( G e. Grp /\ ( # ` B ) < 6 ) -> ( ( # ` B ) e. NN <-> B =/= (/) ) ) | 
						
							| 18 | 3 17 | mpbird |  |-  ( ( G e. Grp /\ ( # ` B ) < 6 ) -> ( # ` B ) e. NN ) | 
						
							| 19 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 20 | 18 19 | eleqtrdi |  |-  ( ( G e. Grp /\ ( # ` B ) < 6 ) -> ( # ` B ) e. ( ZZ>= ` 1 ) ) | 
						
							| 21 |  | 6nn |  |-  6 e. NN | 
						
							| 22 | 21 | nnzi |  |-  6 e. ZZ | 
						
							| 23 | 22 | a1i |  |-  ( ( G e. Grp /\ ( # ` B ) < 6 ) -> 6 e. ZZ ) | 
						
							| 24 |  | simpr |  |-  ( ( G e. Grp /\ ( # ` B ) < 6 ) -> ( # ` B ) < 6 ) | 
						
							| 25 |  | elfzo2 |  |-  ( ( # ` B ) e. ( 1 ..^ 6 ) <-> ( ( # ` B ) e. ( ZZ>= ` 1 ) /\ 6 e. ZZ /\ ( # ` B ) < 6 ) ) | 
						
							| 26 | 20 23 24 25 | syl3anbrc |  |-  ( ( G e. Grp /\ ( # ` B ) < 6 ) -> ( # ` B ) e. ( 1 ..^ 6 ) ) | 
						
							| 27 |  | df-6 |  |-  6 = ( 5 + 1 ) | 
						
							| 28 | 27 | oveq2i |  |-  ( 1 ..^ 6 ) = ( 1 ..^ ( 5 + 1 ) ) | 
						
							| 29 | 28 | eleq2i |  |-  ( ( # ` B ) e. ( 1 ..^ 6 ) <-> ( # ` B ) e. ( 1 ..^ ( 5 + 1 ) ) ) | 
						
							| 30 |  | 5nn |  |-  5 e. NN | 
						
							| 31 | 30 19 | eleqtri |  |-  5 e. ( ZZ>= ` 1 ) | 
						
							| 32 |  | fzosplitsni |  |-  ( 5 e. ( ZZ>= ` 1 ) -> ( ( # ` B ) e. ( 1 ..^ ( 5 + 1 ) ) <-> ( ( # ` B ) e. ( 1 ..^ 5 ) \/ ( # ` B ) = 5 ) ) ) | 
						
							| 33 | 31 32 | ax-mp |  |-  ( ( # ` B ) e. ( 1 ..^ ( 5 + 1 ) ) <-> ( ( # ` B ) e. ( 1 ..^ 5 ) \/ ( # ` B ) = 5 ) ) | 
						
							| 34 | 29 33 | bitri |  |-  ( ( # ` B ) e. ( 1 ..^ 6 ) <-> ( ( # ` B ) e. ( 1 ..^ 5 ) \/ ( # ` B ) = 5 ) ) | 
						
							| 35 |  | df-5 |  |-  5 = ( 4 + 1 ) | 
						
							| 36 | 35 | oveq2i |  |-  ( 1 ..^ 5 ) = ( 1 ..^ ( 4 + 1 ) ) | 
						
							| 37 | 36 | eleq2i |  |-  ( ( # ` B ) e. ( 1 ..^ 5 ) <-> ( # ` B ) e. ( 1 ..^ ( 4 + 1 ) ) ) | 
						
							| 38 |  | 4nn |  |-  4 e. NN | 
						
							| 39 | 38 19 | eleqtri |  |-  4 e. ( ZZ>= ` 1 ) | 
						
							| 40 |  | fzosplitsni |  |-  ( 4 e. ( ZZ>= ` 1 ) -> ( ( # ` B ) e. ( 1 ..^ ( 4 + 1 ) ) <-> ( ( # ` B ) e. ( 1 ..^ 4 ) \/ ( # ` B ) = 4 ) ) ) | 
						
							| 41 | 39 40 | ax-mp |  |-  ( ( # ` B ) e. ( 1 ..^ ( 4 + 1 ) ) <-> ( ( # ` B ) e. ( 1 ..^ 4 ) \/ ( # ` B ) = 4 ) ) | 
						
							| 42 | 37 41 | bitri |  |-  ( ( # ` B ) e. ( 1 ..^ 5 ) <-> ( ( # ` B ) e. ( 1 ..^ 4 ) \/ ( # ` B ) = 4 ) ) | 
						
							| 43 |  | df-4 |  |-  4 = ( 3 + 1 ) | 
						
							| 44 | 43 | oveq2i |  |-  ( 1 ..^ 4 ) = ( 1 ..^ ( 3 + 1 ) ) | 
						
							| 45 | 44 | eleq2i |  |-  ( ( # ` B ) e. ( 1 ..^ 4 ) <-> ( # ` B ) e. ( 1 ..^ ( 3 + 1 ) ) ) | 
						
							| 46 |  | 3nn |  |-  3 e. NN | 
						
							| 47 | 46 19 | eleqtri |  |-  3 e. ( ZZ>= ` 1 ) | 
						
							| 48 |  | fzosplitsni |  |-  ( 3 e. ( ZZ>= ` 1 ) -> ( ( # ` B ) e. ( 1 ..^ ( 3 + 1 ) ) <-> ( ( # ` B ) e. ( 1 ..^ 3 ) \/ ( # ` B ) = 3 ) ) ) | 
						
							| 49 | 47 48 | ax-mp |  |-  ( ( # ` B ) e. ( 1 ..^ ( 3 + 1 ) ) <-> ( ( # ` B ) e. ( 1 ..^ 3 ) \/ ( # ` B ) = 3 ) ) | 
						
							| 50 | 45 49 | bitri |  |-  ( ( # ` B ) e. ( 1 ..^ 4 ) <-> ( ( # ` B ) e. ( 1 ..^ 3 ) \/ ( # ` B ) = 3 ) ) | 
						
							| 51 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 52 | 51 | oveq2i |  |-  ( 1 ..^ 3 ) = ( 1 ..^ ( 2 + 1 ) ) | 
						
							| 53 | 52 | eleq2i |  |-  ( ( # ` B ) e. ( 1 ..^ 3 ) <-> ( # ` B ) e. ( 1 ..^ ( 2 + 1 ) ) ) | 
						
							| 54 |  | 2eluzge1 |  |-  2 e. ( ZZ>= ` 1 ) | 
						
							| 55 |  | fzosplitsni |  |-  ( 2 e. ( ZZ>= ` 1 ) -> ( ( # ` B ) e. ( 1 ..^ ( 2 + 1 ) ) <-> ( ( # ` B ) e. ( 1 ..^ 2 ) \/ ( # ` B ) = 2 ) ) ) | 
						
							| 56 | 54 55 | ax-mp |  |-  ( ( # ` B ) e. ( 1 ..^ ( 2 + 1 ) ) <-> ( ( # ` B ) e. ( 1 ..^ 2 ) \/ ( # ` B ) = 2 ) ) | 
						
							| 57 | 53 56 | bitri |  |-  ( ( # ` B ) e. ( 1 ..^ 3 ) <-> ( ( # ` B ) e. ( 1 ..^ 2 ) \/ ( # ` B ) = 2 ) ) | 
						
							| 58 |  | elsni |  |-  ( ( # ` B ) e. { 1 } -> ( # ` B ) = 1 ) | 
						
							| 59 |  | fzo12sn |  |-  ( 1 ..^ 2 ) = { 1 } | 
						
							| 60 | 58 59 | eleq2s |  |-  ( ( # ` B ) e. ( 1 ..^ 2 ) -> ( # ` B ) = 1 ) | 
						
							| 61 | 60 | adantl |  |-  ( ( G e. Grp /\ ( # ` B ) e. ( 1 ..^ 2 ) ) -> ( # ` B ) = 1 ) | 
						
							| 62 |  | hash1 |  |-  ( # ` 1o ) = 1 | 
						
							| 63 | 61 62 | eqtr4di |  |-  ( ( G e. Grp /\ ( # ` B ) e. ( 1 ..^ 2 ) ) -> ( # ` B ) = ( # ` 1o ) ) | 
						
							| 64 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 65 | 61 64 | eqeltrdi |  |-  ( ( G e. Grp /\ ( # ` B ) e. ( 1 ..^ 2 ) ) -> ( # ` B ) e. NN0 ) | 
						
							| 66 |  | hashclb |  |-  ( B e. _V -> ( B e. Fin <-> ( # ` B ) e. NN0 ) ) | 
						
							| 67 | 8 66 | ax-mp |  |-  ( B e. Fin <-> ( # ` B ) e. NN0 ) | 
						
							| 68 | 65 67 | sylibr |  |-  ( ( G e. Grp /\ ( # ` B ) e. ( 1 ..^ 2 ) ) -> B e. Fin ) | 
						
							| 69 |  | 1onn |  |-  1o e. _om | 
						
							| 70 |  | nnfi |  |-  ( 1o e. _om -> 1o e. Fin ) | 
						
							| 71 | 69 70 | ax-mp |  |-  1o e. Fin | 
						
							| 72 |  | hashen |  |-  ( ( B e. Fin /\ 1o e. Fin ) -> ( ( # ` B ) = ( # ` 1o ) <-> B ~~ 1o ) ) | 
						
							| 73 | 68 71 72 | sylancl |  |-  ( ( G e. Grp /\ ( # ` B ) e. ( 1 ..^ 2 ) ) -> ( ( # ` B ) = ( # ` 1o ) <-> B ~~ 1o ) ) | 
						
							| 74 | 63 73 | mpbid |  |-  ( ( G e. Grp /\ ( # ` B ) e. ( 1 ..^ 2 ) ) -> B ~~ 1o ) | 
						
							| 75 | 1 | 0cyg |  |-  ( ( G e. Grp /\ B ~~ 1o ) -> G e. CycGrp ) | 
						
							| 76 |  | cygabl |  |-  ( G e. CycGrp -> G e. Abel ) | 
						
							| 77 | 75 76 | syl |  |-  ( ( G e. Grp /\ B ~~ 1o ) -> G e. Abel ) | 
						
							| 78 | 74 77 | syldan |  |-  ( ( G e. Grp /\ ( # ` B ) e. ( 1 ..^ 2 ) ) -> G e. Abel ) | 
						
							| 79 | 78 | ex |  |-  ( G e. Grp -> ( ( # ` B ) e. ( 1 ..^ 2 ) -> G e. Abel ) ) | 
						
							| 80 |  | id |  |-  ( ( # ` B ) = 2 -> ( # ` B ) = 2 ) | 
						
							| 81 |  | 2prm |  |-  2 e. Prime | 
						
							| 82 | 80 81 | eqeltrdi |  |-  ( ( # ` B ) = 2 -> ( # ` B ) e. Prime ) | 
						
							| 83 | 1 | prmcyg |  |-  ( ( G e. Grp /\ ( # ` B ) e. Prime ) -> G e. CycGrp ) | 
						
							| 84 | 83 76 | syl |  |-  ( ( G e. Grp /\ ( # ` B ) e. Prime ) -> G e. Abel ) | 
						
							| 85 | 84 | ex |  |-  ( G e. Grp -> ( ( # ` B ) e. Prime -> G e. Abel ) ) | 
						
							| 86 | 82 85 | syl5 |  |-  ( G e. Grp -> ( ( # ` B ) = 2 -> G e. Abel ) ) | 
						
							| 87 | 79 86 | jaod |  |-  ( G e. Grp -> ( ( ( # ` B ) e. ( 1 ..^ 2 ) \/ ( # ` B ) = 2 ) -> G e. Abel ) ) | 
						
							| 88 | 57 87 | biimtrid |  |-  ( G e. Grp -> ( ( # ` B ) e. ( 1 ..^ 3 ) -> G e. Abel ) ) | 
						
							| 89 |  | id |  |-  ( ( # ` B ) = 3 -> ( # ` B ) = 3 ) | 
						
							| 90 |  | 3prm |  |-  3 e. Prime | 
						
							| 91 | 89 90 | eqeltrdi |  |-  ( ( # ` B ) = 3 -> ( # ` B ) e. Prime ) | 
						
							| 92 | 91 85 | syl5 |  |-  ( G e. Grp -> ( ( # ` B ) = 3 -> G e. Abel ) ) | 
						
							| 93 | 88 92 | jaod |  |-  ( G e. Grp -> ( ( ( # ` B ) e. ( 1 ..^ 3 ) \/ ( # ` B ) = 3 ) -> G e. Abel ) ) | 
						
							| 94 | 50 93 | biimtrid |  |-  ( G e. Grp -> ( ( # ` B ) e. ( 1 ..^ 4 ) -> G e. Abel ) ) | 
						
							| 95 |  | simpl |  |-  ( ( G e. Grp /\ ( # ` B ) = 4 ) -> G e. Grp ) | 
						
							| 96 |  | 2z |  |-  2 e. ZZ | 
						
							| 97 |  | eqid |  |-  ( gEx ` G ) = ( gEx ` G ) | 
						
							| 98 |  | eqid |  |-  ( od ` G ) = ( od ` G ) | 
						
							| 99 | 1 97 98 | gexdvds2 |  |-  ( ( G e. Grp /\ 2 e. ZZ ) -> ( ( gEx ` G ) || 2 <-> A. x e. B ( ( od ` G ) ` x ) || 2 ) ) | 
						
							| 100 | 95 96 99 | sylancl |  |-  ( ( G e. Grp /\ ( # ` B ) = 4 ) -> ( ( gEx ` G ) || 2 <-> A. x e. B ( ( od ` G ) ` x ) || 2 ) ) | 
						
							| 101 | 1 97 | gex2abl |  |-  ( ( G e. Grp /\ ( gEx ` G ) || 2 ) -> G e. Abel ) | 
						
							| 102 | 101 | ex |  |-  ( G e. Grp -> ( ( gEx ` G ) || 2 -> G e. Abel ) ) | 
						
							| 103 | 102 | adantr |  |-  ( ( G e. Grp /\ ( # ` B ) = 4 ) -> ( ( gEx ` G ) || 2 -> G e. Abel ) ) | 
						
							| 104 | 100 103 | sylbird |  |-  ( ( G e. Grp /\ ( # ` B ) = 4 ) -> ( A. x e. B ( ( od ` G ) ` x ) || 2 -> G e. Abel ) ) | 
						
							| 105 |  | rexnal |  |-  ( E. x e. B -. ( ( od ` G ) ` x ) || 2 <-> -. A. x e. B ( ( od ` G ) ` x ) || 2 ) | 
						
							| 106 | 95 | adantr |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> G e. Grp ) | 
						
							| 107 |  | simprl |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> x e. B ) | 
						
							| 108 | 1 98 | odcl |  |-  ( x e. B -> ( ( od ` G ) ` x ) e. NN0 ) | 
						
							| 109 | 108 | ad2antrl |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( ( od ` G ) ` x ) e. NN0 ) | 
						
							| 110 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 111 | 110 | a1i |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> 4 e. NN0 ) | 
						
							| 112 |  | simpr |  |-  ( ( G e. Grp /\ ( # ` B ) = 4 ) -> ( # ` B ) = 4 ) | 
						
							| 113 | 112 110 | eqeltrdi |  |-  ( ( G e. Grp /\ ( # ` B ) = 4 ) -> ( # ` B ) e. NN0 ) | 
						
							| 114 | 113 67 | sylibr |  |-  ( ( G e. Grp /\ ( # ` B ) = 4 ) -> B e. Fin ) | 
						
							| 115 | 114 | adantr |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> B e. Fin ) | 
						
							| 116 | 1 98 | oddvds2 |  |-  ( ( G e. Grp /\ B e. Fin /\ x e. B ) -> ( ( od ` G ) ` x ) || ( # ` B ) ) | 
						
							| 117 | 106 115 107 116 | syl3anc |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( ( od ` G ) ` x ) || ( # ` B ) ) | 
						
							| 118 | 112 | adantr |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( # ` B ) = 4 ) | 
						
							| 119 | 117 118 | breqtrd |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( ( od ` G ) ` x ) || 4 ) | 
						
							| 120 |  | sq2 |  |-  ( 2 ^ 2 ) = 4 | 
						
							| 121 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 122 | 96 | a1i |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> 2 e. ZZ ) | 
						
							| 123 | 1 98 | odcl2 |  |-  ( ( G e. Grp /\ B e. Fin /\ x e. B ) -> ( ( od ` G ) ` x ) e. NN ) | 
						
							| 124 | 106 115 107 123 | syl3anc |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( ( od ` G ) ` x ) e. NN ) | 
						
							| 125 |  | pccl |  |-  ( ( 2 e. Prime /\ ( ( od ` G ) ` x ) e. NN ) -> ( 2 pCnt ( ( od ` G ) ` x ) ) e. NN0 ) | 
						
							| 126 | 81 124 125 | sylancr |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 2 pCnt ( ( od ` G ) ` x ) ) e. NN0 ) | 
						
							| 127 | 126 | nn0zd |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 2 pCnt ( ( od ` G ) ` x ) ) e. ZZ ) | 
						
							| 128 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 129 |  | simprr |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> -. ( ( od ` G ) ` x ) || 2 ) | 
						
							| 130 |  | dvdsexp |  |-  ( ( 2 e. ZZ /\ ( 2 pCnt ( ( od ` G ) ` x ) ) e. NN0 /\ 1 e. ( ZZ>= ` ( 2 pCnt ( ( od ` G ) ` x ) ) ) ) -> ( 2 ^ ( 2 pCnt ( ( od ` G ) ` x ) ) ) || ( 2 ^ 1 ) ) | 
						
							| 131 | 130 | 3expia |  |-  ( ( 2 e. ZZ /\ ( 2 pCnt ( ( od ` G ) ` x ) ) e. NN0 ) -> ( 1 e. ( ZZ>= ` ( 2 pCnt ( ( od ` G ) ` x ) ) ) -> ( 2 ^ ( 2 pCnt ( ( od ` G ) ` x ) ) ) || ( 2 ^ 1 ) ) ) | 
						
							| 132 | 96 126 131 | sylancr |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 1 e. ( ZZ>= ` ( 2 pCnt ( ( od ` G ) ` x ) ) ) -> ( 2 ^ ( 2 pCnt ( ( od ` G ) ` x ) ) ) || ( 2 ^ 1 ) ) ) | 
						
							| 133 |  | 1z |  |-  1 e. ZZ | 
						
							| 134 |  | eluz |  |-  ( ( ( 2 pCnt ( ( od ` G ) ` x ) ) e. ZZ /\ 1 e. ZZ ) -> ( 1 e. ( ZZ>= ` ( 2 pCnt ( ( od ` G ) ` x ) ) ) <-> ( 2 pCnt ( ( od ` G ) ` x ) ) <_ 1 ) ) | 
						
							| 135 | 127 133 134 | sylancl |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 1 e. ( ZZ>= ` ( 2 pCnt ( ( od ` G ) ` x ) ) ) <-> ( 2 pCnt ( ( od ` G ) ` x ) ) <_ 1 ) ) | 
						
							| 136 |  | oveq2 |  |-  ( n = 2 -> ( 2 ^ n ) = ( 2 ^ 2 ) ) | 
						
							| 137 | 136 120 | eqtrdi |  |-  ( n = 2 -> ( 2 ^ n ) = 4 ) | 
						
							| 138 | 137 | breq2d |  |-  ( n = 2 -> ( ( ( od ` G ) ` x ) || ( 2 ^ n ) <-> ( ( od ` G ) ` x ) || 4 ) ) | 
						
							| 139 | 138 | rspcev |  |-  ( ( 2 e. NN0 /\ ( ( od ` G ) ` x ) || 4 ) -> E. n e. NN0 ( ( od ` G ) ` x ) || ( 2 ^ n ) ) | 
						
							| 140 | 121 119 139 | sylancr |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> E. n e. NN0 ( ( od ` G ) ` x ) || ( 2 ^ n ) ) | 
						
							| 141 |  | pcprmpw2 |  |-  ( ( 2 e. Prime /\ ( ( od ` G ) ` x ) e. NN ) -> ( E. n e. NN0 ( ( od ` G ) ` x ) || ( 2 ^ n ) <-> ( ( od ` G ) ` x ) = ( 2 ^ ( 2 pCnt ( ( od ` G ) ` x ) ) ) ) ) | 
						
							| 142 | 81 124 141 | sylancr |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( E. n e. NN0 ( ( od ` G ) ` x ) || ( 2 ^ n ) <-> ( ( od ` G ) ` x ) = ( 2 ^ ( 2 pCnt ( ( od ` G ) ` x ) ) ) ) ) | 
						
							| 143 | 140 142 | mpbid |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( ( od ` G ) ` x ) = ( 2 ^ ( 2 pCnt ( ( od ` G ) ` x ) ) ) ) | 
						
							| 144 | 143 | eqcomd |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 2 ^ ( 2 pCnt ( ( od ` G ) ` x ) ) ) = ( ( od ` G ) ` x ) ) | 
						
							| 145 |  | 2cn |  |-  2 e. CC | 
						
							| 146 |  | exp1 |  |-  ( 2 e. CC -> ( 2 ^ 1 ) = 2 ) | 
						
							| 147 | 145 146 | ax-mp |  |-  ( 2 ^ 1 ) = 2 | 
						
							| 148 | 147 | a1i |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 2 ^ 1 ) = 2 ) | 
						
							| 149 | 144 148 | breq12d |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( ( 2 ^ ( 2 pCnt ( ( od ` G ) ` x ) ) ) || ( 2 ^ 1 ) <-> ( ( od ` G ) ` x ) || 2 ) ) | 
						
							| 150 | 132 135 149 | 3imtr3d |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( ( 2 pCnt ( ( od ` G ) ` x ) ) <_ 1 -> ( ( od ` G ) ` x ) || 2 ) ) | 
						
							| 151 | 129 150 | mtod |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> -. ( 2 pCnt ( ( od ` G ) ` x ) ) <_ 1 ) | 
						
							| 152 |  | 1re |  |-  1 e. RR | 
						
							| 153 | 126 | nn0red |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 2 pCnt ( ( od ` G ) ` x ) ) e. RR ) | 
						
							| 154 |  | ltnle |  |-  ( ( 1 e. RR /\ ( 2 pCnt ( ( od ` G ) ` x ) ) e. RR ) -> ( 1 < ( 2 pCnt ( ( od ` G ) ` x ) ) <-> -. ( 2 pCnt ( ( od ` G ) ` x ) ) <_ 1 ) ) | 
						
							| 155 | 152 153 154 | sylancr |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 1 < ( 2 pCnt ( ( od ` G ) ` x ) ) <-> -. ( 2 pCnt ( ( od ` G ) ` x ) ) <_ 1 ) ) | 
						
							| 156 | 151 155 | mpbird |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> 1 < ( 2 pCnt ( ( od ` G ) ` x ) ) ) | 
						
							| 157 |  | nn0ltp1le |  |-  ( ( 1 e. NN0 /\ ( 2 pCnt ( ( od ` G ) ` x ) ) e. NN0 ) -> ( 1 < ( 2 pCnt ( ( od ` G ) ` x ) ) <-> ( 1 + 1 ) <_ ( 2 pCnt ( ( od ` G ) ` x ) ) ) ) | 
						
							| 158 | 64 126 157 | sylancr |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 1 < ( 2 pCnt ( ( od ` G ) ` x ) ) <-> ( 1 + 1 ) <_ ( 2 pCnt ( ( od ` G ) ` x ) ) ) ) | 
						
							| 159 | 156 158 | mpbid |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 1 + 1 ) <_ ( 2 pCnt ( ( od ` G ) ` x ) ) ) | 
						
							| 160 | 128 159 | eqbrtrid |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> 2 <_ ( 2 pCnt ( ( od ` G ) ` x ) ) ) | 
						
							| 161 |  | eluz2 |  |-  ( ( 2 pCnt ( ( od ` G ) ` x ) ) e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ ( 2 pCnt ( ( od ` G ) ` x ) ) e. ZZ /\ 2 <_ ( 2 pCnt ( ( od ` G ) ` x ) ) ) ) | 
						
							| 162 | 122 127 160 161 | syl3anbrc |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 2 pCnt ( ( od ` G ) ` x ) ) e. ( ZZ>= ` 2 ) ) | 
						
							| 163 |  | dvdsexp |  |-  ( ( 2 e. ZZ /\ 2 e. NN0 /\ ( 2 pCnt ( ( od ` G ) ` x ) ) e. ( ZZ>= ` 2 ) ) -> ( 2 ^ 2 ) || ( 2 ^ ( 2 pCnt ( ( od ` G ) ` x ) ) ) ) | 
						
							| 164 | 96 121 162 163 | mp3an12i |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 2 ^ 2 ) || ( 2 ^ ( 2 pCnt ( ( od ` G ) ` x ) ) ) ) | 
						
							| 165 | 120 164 | eqbrtrrid |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> 4 || ( 2 ^ ( 2 pCnt ( ( od ` G ) ` x ) ) ) ) | 
						
							| 166 | 165 143 | breqtrrd |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> 4 || ( ( od ` G ) ` x ) ) | 
						
							| 167 |  | dvdseq |  |-  ( ( ( ( ( od ` G ) ` x ) e. NN0 /\ 4 e. NN0 ) /\ ( ( ( od ` G ) ` x ) || 4 /\ 4 || ( ( od ` G ) ` x ) ) ) -> ( ( od ` G ) ` x ) = 4 ) | 
						
							| 168 | 109 111 119 166 167 | syl22anc |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( ( od ` G ) ` x ) = 4 ) | 
						
							| 169 | 168 118 | eqtr4d |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( ( od ` G ) ` x ) = ( # ` B ) ) | 
						
							| 170 | 1 98 106 107 169 | iscygodd |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> G e. CycGrp ) | 
						
							| 171 | 170 76 | syl |  |-  ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> G e. Abel ) | 
						
							| 172 | 171 | rexlimdvaa |  |-  ( ( G e. Grp /\ ( # ` B ) = 4 ) -> ( E. x e. B -. ( ( od ` G ) ` x ) || 2 -> G e. Abel ) ) | 
						
							| 173 | 105 172 | biimtrrid |  |-  ( ( G e. Grp /\ ( # ` B ) = 4 ) -> ( -. A. x e. B ( ( od ` G ) ` x ) || 2 -> G e. Abel ) ) | 
						
							| 174 | 104 173 | pm2.61d |  |-  ( ( G e. Grp /\ ( # ` B ) = 4 ) -> G e. Abel ) | 
						
							| 175 | 174 | ex |  |-  ( G e. Grp -> ( ( # ` B ) = 4 -> G e. Abel ) ) | 
						
							| 176 | 94 175 | jaod |  |-  ( G e. Grp -> ( ( ( # ` B ) e. ( 1 ..^ 4 ) \/ ( # ` B ) = 4 ) -> G e. Abel ) ) | 
						
							| 177 | 42 176 | biimtrid |  |-  ( G e. Grp -> ( ( # ` B ) e. ( 1 ..^ 5 ) -> G e. Abel ) ) | 
						
							| 178 |  | id |  |-  ( ( # ` B ) = 5 -> ( # ` B ) = 5 ) | 
						
							| 179 |  | 5prm |  |-  5 e. Prime | 
						
							| 180 | 178 179 | eqeltrdi |  |-  ( ( # ` B ) = 5 -> ( # ` B ) e. Prime ) | 
						
							| 181 | 180 85 | syl5 |  |-  ( G e. Grp -> ( ( # ` B ) = 5 -> G e. Abel ) ) | 
						
							| 182 | 177 181 | jaod |  |-  ( G e. Grp -> ( ( ( # ` B ) e. ( 1 ..^ 5 ) \/ ( # ` B ) = 5 ) -> G e. Abel ) ) | 
						
							| 183 | 34 182 | biimtrid |  |-  ( G e. Grp -> ( ( # ` B ) e. ( 1 ..^ 6 ) -> G e. Abel ) ) | 
						
							| 184 | 183 | imp |  |-  ( ( G e. Grp /\ ( # ` B ) e. ( 1 ..^ 6 ) ) -> G e. Abel ) | 
						
							| 185 | 26 184 | syldan |  |-  ( ( G e. Grp /\ ( # ` B ) < 6 ) -> G e. Abel ) |