| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gexod.1 |
|- X = ( Base ` G ) |
| 2 |
|
gexod.2 |
|- E = ( gEx ` G ) |
| 3 |
|
gexod.3 |
|- O = ( od ` G ) |
| 4 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
| 5 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 6 |
1 2 4 5
|
gexdvds |
|- ( ( G e. Grp /\ N e. ZZ ) -> ( E || N <-> A. x e. X ( N ( .g ` G ) x ) = ( 0g ` G ) ) ) |
| 7 |
1 3 4 5
|
oddvds |
|- ( ( G e. Grp /\ x e. X /\ N e. ZZ ) -> ( ( O ` x ) || N <-> ( N ( .g ` G ) x ) = ( 0g ` G ) ) ) |
| 8 |
7
|
3expa |
|- ( ( ( G e. Grp /\ x e. X ) /\ N e. ZZ ) -> ( ( O ` x ) || N <-> ( N ( .g ` G ) x ) = ( 0g ` G ) ) ) |
| 9 |
8
|
an32s |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> ( ( O ` x ) || N <-> ( N ( .g ` G ) x ) = ( 0g ` G ) ) ) |
| 10 |
9
|
ralbidva |
|- ( ( G e. Grp /\ N e. ZZ ) -> ( A. x e. X ( O ` x ) || N <-> A. x e. X ( N ( .g ` G ) x ) = ( 0g ` G ) ) ) |
| 11 |
6 10
|
bitr4d |
|- ( ( G e. Grp /\ N e. ZZ ) -> ( E || N <-> A. x e. X ( O ` x ) || N ) ) |