Step |
Hyp |
Ref |
Expression |
1 |
|
gexcl.1 |
|- X = ( Base ` G ) |
2 |
|
gexcl.2 |
|- E = ( gEx ` G ) |
3 |
|
gexid.3 |
|- .x. = ( .g ` G ) |
4 |
|
gexid.4 |
|- .0. = ( 0g ` G ) |
5 |
1 2 3 4
|
gexdvdsi |
|- ( ( G e. Grp /\ x e. X /\ E || N ) -> ( N .x. x ) = .0. ) |
6 |
5
|
3expia |
|- ( ( G e. Grp /\ x e. X ) -> ( E || N -> ( N .x. x ) = .0. ) ) |
7 |
6
|
ralrimdva |
|- ( G e. Grp -> ( E || N -> A. x e. X ( N .x. x ) = .0. ) ) |
8 |
7
|
adantr |
|- ( ( G e. Grp /\ N e. ZZ ) -> ( E || N -> A. x e. X ( N .x. x ) = .0. ) ) |
9 |
|
noel |
|- -. ( abs ` N ) e. (/) |
10 |
|
simprr |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) |
11 |
10
|
eleq2d |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( ( abs ` N ) e. { y e. NN | A. x e. X ( y .x. x ) = .0. } <-> ( abs ` N ) e. (/) ) ) |
12 |
|
oveq1 |
|- ( y = ( abs ` N ) -> ( y .x. x ) = ( ( abs ` N ) .x. x ) ) |
13 |
12
|
eqeq1d |
|- ( y = ( abs ` N ) -> ( ( y .x. x ) = .0. <-> ( ( abs ` N ) .x. x ) = .0. ) ) |
14 |
13
|
ralbidv |
|- ( y = ( abs ` N ) -> ( A. x e. X ( y .x. x ) = .0. <-> A. x e. X ( ( abs ` N ) .x. x ) = .0. ) ) |
15 |
14
|
elrab |
|- ( ( abs ` N ) e. { y e. NN | A. x e. X ( y .x. x ) = .0. } <-> ( ( abs ` N ) e. NN /\ A. x e. X ( ( abs ` N ) .x. x ) = .0. ) ) |
16 |
11 15
|
bitr3di |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( ( abs ` N ) e. (/) <-> ( ( abs ` N ) e. NN /\ A. x e. X ( ( abs ` N ) .x. x ) = .0. ) ) ) |
17 |
16
|
rbaibd |
|- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) /\ A. x e. X ( ( abs ` N ) .x. x ) = .0. ) -> ( ( abs ` N ) e. (/) <-> ( abs ` N ) e. NN ) ) |
18 |
9 17
|
mtbii |
|- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) /\ A. x e. X ( ( abs ` N ) .x. x ) = .0. ) -> -. ( abs ` N ) e. NN ) |
19 |
18
|
ex |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( A. x e. X ( ( abs ` N ) .x. x ) = .0. -> -. ( abs ` N ) e. NN ) ) |
20 |
|
nn0abscl |
|- ( N e. ZZ -> ( abs ` N ) e. NN0 ) |
21 |
20
|
ad2antlr |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( abs ` N ) e. NN0 ) |
22 |
|
elnn0 |
|- ( ( abs ` N ) e. NN0 <-> ( ( abs ` N ) e. NN \/ ( abs ` N ) = 0 ) ) |
23 |
21 22
|
sylib |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( ( abs ` N ) e. NN \/ ( abs ` N ) = 0 ) ) |
24 |
23
|
ord |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( -. ( abs ` N ) e. NN -> ( abs ` N ) = 0 ) ) |
25 |
19 24
|
syld |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( A. x e. X ( ( abs ` N ) .x. x ) = .0. -> ( abs ` N ) = 0 ) ) |
26 |
|
simpr |
|- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) /\ ( abs ` N ) = N ) -> ( abs ` N ) = N ) |
27 |
26
|
oveq1d |
|- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) /\ ( abs ` N ) = N ) -> ( ( abs ` N ) .x. x ) = ( N .x. x ) ) |
28 |
27
|
eqeq1d |
|- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) /\ ( abs ` N ) = N ) -> ( ( ( abs ` N ) .x. x ) = .0. <-> ( N .x. x ) = .0. ) ) |
29 |
|
oveq1 |
|- ( ( abs ` N ) = -u N -> ( ( abs ` N ) .x. x ) = ( -u N .x. x ) ) |
30 |
29
|
eqeq1d |
|- ( ( abs ` N ) = -u N -> ( ( ( abs ` N ) .x. x ) = .0. <-> ( -u N .x. x ) = .0. ) ) |
31 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
32 |
1 3 31
|
mulgneg |
|- ( ( G e. Grp /\ N e. ZZ /\ x e. X ) -> ( -u N .x. x ) = ( ( invg ` G ) ` ( N .x. x ) ) ) |
33 |
32
|
3expa |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> ( -u N .x. x ) = ( ( invg ` G ) ` ( N .x. x ) ) ) |
34 |
4 31
|
grpinvid |
|- ( G e. Grp -> ( ( invg ` G ) ` .0. ) = .0. ) |
35 |
34
|
ad2antrr |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> ( ( invg ` G ) ` .0. ) = .0. ) |
36 |
35
|
eqcomd |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> .0. = ( ( invg ` G ) ` .0. ) ) |
37 |
33 36
|
eqeq12d |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> ( ( -u N .x. x ) = .0. <-> ( ( invg ` G ) ` ( N .x. x ) ) = ( ( invg ` G ) ` .0. ) ) ) |
38 |
|
simpll |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> G e. Grp ) |
39 |
1 3
|
mulgcl |
|- ( ( G e. Grp /\ N e. ZZ /\ x e. X ) -> ( N .x. x ) e. X ) |
40 |
39
|
3expa |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> ( N .x. x ) e. X ) |
41 |
1 4
|
grpidcl |
|- ( G e. Grp -> .0. e. X ) |
42 |
41
|
ad2antrr |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> .0. e. X ) |
43 |
1 31 38 40 42
|
grpinv11 |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> ( ( ( invg ` G ) ` ( N .x. x ) ) = ( ( invg ` G ) ` .0. ) <-> ( N .x. x ) = .0. ) ) |
44 |
37 43
|
bitrd |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> ( ( -u N .x. x ) = .0. <-> ( N .x. x ) = .0. ) ) |
45 |
30 44
|
sylan9bbr |
|- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) /\ ( abs ` N ) = -u N ) -> ( ( ( abs ` N ) .x. x ) = .0. <-> ( N .x. x ) = .0. ) ) |
46 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
47 |
46
|
ad2antlr |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> N e. RR ) |
48 |
47
|
absord |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) |
49 |
28 45 48
|
mpjaodan |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> ( ( ( abs ` N ) .x. x ) = .0. <-> ( N .x. x ) = .0. ) ) |
50 |
49
|
ralbidva |
|- ( ( G e. Grp /\ N e. ZZ ) -> ( A. x e. X ( ( abs ` N ) .x. x ) = .0. <-> A. x e. X ( N .x. x ) = .0. ) ) |
51 |
50
|
adantr |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( A. x e. X ( ( abs ` N ) .x. x ) = .0. <-> A. x e. X ( N .x. x ) = .0. ) ) |
52 |
|
0dvds |
|- ( N e. ZZ -> ( 0 || N <-> N = 0 ) ) |
53 |
52
|
ad2antlr |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( 0 || N <-> N = 0 ) ) |
54 |
|
simprl |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> E = 0 ) |
55 |
54
|
breq1d |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( E || N <-> 0 || N ) ) |
56 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
57 |
56
|
ad2antlr |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> N e. CC ) |
58 |
57
|
abs00ad |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( ( abs ` N ) = 0 <-> N = 0 ) ) |
59 |
53 55 58
|
3bitr4rd |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( ( abs ` N ) = 0 <-> E || N ) ) |
60 |
25 51 59
|
3imtr3d |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( A. x e. X ( N .x. x ) = .0. -> E || N ) ) |
61 |
|
elrabi |
|- ( E e. { y e. NN | A. x e. X ( y .x. x ) = .0. } -> E e. NN ) |
62 |
46
|
adantl |
|- ( ( G e. Grp /\ N e. ZZ ) -> N e. RR ) |
63 |
|
nnrp |
|- ( E e. NN -> E e. RR+ ) |
64 |
|
modval |
|- ( ( N e. RR /\ E e. RR+ ) -> ( N mod E ) = ( N - ( E x. ( |_ ` ( N / E ) ) ) ) ) |
65 |
62 63 64
|
syl2an |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( N mod E ) = ( N - ( E x. ( |_ ` ( N / E ) ) ) ) ) |
66 |
65
|
adantr |
|- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> ( N mod E ) = ( N - ( E x. ( |_ ` ( N / E ) ) ) ) ) |
67 |
66
|
oveq1d |
|- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> ( ( N mod E ) .x. x ) = ( ( N - ( E x. ( |_ ` ( N / E ) ) ) ) .x. x ) ) |
68 |
|
simplll |
|- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> G e. Grp ) |
69 |
|
simpllr |
|- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> N e. ZZ ) |
70 |
|
nnz |
|- ( E e. NN -> E e. ZZ ) |
71 |
70
|
ad2antlr |
|- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> E e. ZZ ) |
72 |
|
rerpdivcl |
|- ( ( N e. RR /\ E e. RR+ ) -> ( N / E ) e. RR ) |
73 |
62 63 72
|
syl2an |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( N / E ) e. RR ) |
74 |
73
|
flcld |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( |_ ` ( N / E ) ) e. ZZ ) |
75 |
74
|
adantr |
|- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> ( |_ ` ( N / E ) ) e. ZZ ) |
76 |
71 75
|
zmulcld |
|- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> ( E x. ( |_ ` ( N / E ) ) ) e. ZZ ) |
77 |
|
simprl |
|- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> x e. X ) |
78 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
79 |
1 3 78
|
mulgsubdir |
|- ( ( G e. Grp /\ ( N e. ZZ /\ ( E x. ( |_ ` ( N / E ) ) ) e. ZZ /\ x e. X ) ) -> ( ( N - ( E x. ( |_ ` ( N / E ) ) ) ) .x. x ) = ( ( N .x. x ) ( -g ` G ) ( ( E x. ( |_ ` ( N / E ) ) ) .x. x ) ) ) |
80 |
68 69 76 77 79
|
syl13anc |
|- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> ( ( N - ( E x. ( |_ ` ( N / E ) ) ) ) .x. x ) = ( ( N .x. x ) ( -g ` G ) ( ( E x. ( |_ ` ( N / E ) ) ) .x. x ) ) ) |
81 |
|
simprr |
|- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> ( N .x. x ) = .0. ) |
82 |
|
dvdsmul1 |
|- ( ( E e. ZZ /\ ( |_ ` ( N / E ) ) e. ZZ ) -> E || ( E x. ( |_ ` ( N / E ) ) ) ) |
83 |
71 75 82
|
syl2anc |
|- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> E || ( E x. ( |_ ` ( N / E ) ) ) ) |
84 |
1 2 3 4
|
gexdvdsi |
|- ( ( G e. Grp /\ x e. X /\ E || ( E x. ( |_ ` ( N / E ) ) ) ) -> ( ( E x. ( |_ ` ( N / E ) ) ) .x. x ) = .0. ) |
85 |
68 77 83 84
|
syl3anc |
|- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> ( ( E x. ( |_ ` ( N / E ) ) ) .x. x ) = .0. ) |
86 |
81 85
|
oveq12d |
|- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> ( ( N .x. x ) ( -g ` G ) ( ( E x. ( |_ ` ( N / E ) ) ) .x. x ) ) = ( .0. ( -g ` G ) .0. ) ) |
87 |
|
simpll |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> G e. Grp ) |
88 |
1 4 78
|
grpsubid |
|- ( ( G e. Grp /\ .0. e. X ) -> ( .0. ( -g ` G ) .0. ) = .0. ) |
89 |
87 41 88
|
syl2anc2 |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( .0. ( -g ` G ) .0. ) = .0. ) |
90 |
89
|
adantr |
|- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> ( .0. ( -g ` G ) .0. ) = .0. ) |
91 |
86 90
|
eqtrd |
|- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> ( ( N .x. x ) ( -g ` G ) ( ( E x. ( |_ ` ( N / E ) ) ) .x. x ) ) = .0. ) |
92 |
67 80 91
|
3eqtrd |
|- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> ( ( N mod E ) .x. x ) = .0. ) |
93 |
92
|
expr |
|- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ x e. X ) -> ( ( N .x. x ) = .0. -> ( ( N mod E ) .x. x ) = .0. ) ) |
94 |
93
|
ralimdva |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( A. x e. X ( N .x. x ) = .0. -> A. x e. X ( ( N mod E ) .x. x ) = .0. ) ) |
95 |
|
modlt |
|- ( ( N e. RR /\ E e. RR+ ) -> ( N mod E ) < E ) |
96 |
62 63 95
|
syl2an |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( N mod E ) < E ) |
97 |
|
zmodcl |
|- ( ( N e. ZZ /\ E e. NN ) -> ( N mod E ) e. NN0 ) |
98 |
97
|
adantll |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( N mod E ) e. NN0 ) |
99 |
98
|
nn0red |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( N mod E ) e. RR ) |
100 |
|
nnre |
|- ( E e. NN -> E e. RR ) |
101 |
100
|
adantl |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> E e. RR ) |
102 |
99 101
|
ltnled |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( ( N mod E ) < E <-> -. E <_ ( N mod E ) ) ) |
103 |
96 102
|
mpbid |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> -. E <_ ( N mod E ) ) |
104 |
1 2 3 4
|
gexlem2 |
|- ( ( G e. Grp /\ ( N mod E ) e. NN /\ A. x e. X ( ( N mod E ) .x. x ) = .0. ) -> E e. ( 1 ... ( N mod E ) ) ) |
105 |
|
elfzle2 |
|- ( E e. ( 1 ... ( N mod E ) ) -> E <_ ( N mod E ) ) |
106 |
104 105
|
syl |
|- ( ( G e. Grp /\ ( N mod E ) e. NN /\ A. x e. X ( ( N mod E ) .x. x ) = .0. ) -> E <_ ( N mod E ) ) |
107 |
106
|
3expia |
|- ( ( G e. Grp /\ ( N mod E ) e. NN ) -> ( A. x e. X ( ( N mod E ) .x. x ) = .0. -> E <_ ( N mod E ) ) ) |
108 |
107
|
impancom |
|- ( ( G e. Grp /\ A. x e. X ( ( N mod E ) .x. x ) = .0. ) -> ( ( N mod E ) e. NN -> E <_ ( N mod E ) ) ) |
109 |
108
|
con3d |
|- ( ( G e. Grp /\ A. x e. X ( ( N mod E ) .x. x ) = .0. ) -> ( -. E <_ ( N mod E ) -> -. ( N mod E ) e. NN ) ) |
110 |
109
|
ex |
|- ( G e. Grp -> ( A. x e. X ( ( N mod E ) .x. x ) = .0. -> ( -. E <_ ( N mod E ) -> -. ( N mod E ) e. NN ) ) ) |
111 |
110
|
ad2antrr |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( A. x e. X ( ( N mod E ) .x. x ) = .0. -> ( -. E <_ ( N mod E ) -> -. ( N mod E ) e. NN ) ) ) |
112 |
103 111
|
mpid |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( A. x e. X ( ( N mod E ) .x. x ) = .0. -> -. ( N mod E ) e. NN ) ) |
113 |
|
elnn0 |
|- ( ( N mod E ) e. NN0 <-> ( ( N mod E ) e. NN \/ ( N mod E ) = 0 ) ) |
114 |
98 113
|
sylib |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( ( N mod E ) e. NN \/ ( N mod E ) = 0 ) ) |
115 |
114
|
ord |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( -. ( N mod E ) e. NN -> ( N mod E ) = 0 ) ) |
116 |
94 112 115
|
3syld |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( A. x e. X ( N .x. x ) = .0. -> ( N mod E ) = 0 ) ) |
117 |
|
simpr |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> E e. NN ) |
118 |
|
simplr |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> N e. ZZ ) |
119 |
|
dvdsval3 |
|- ( ( E e. NN /\ N e. ZZ ) -> ( E || N <-> ( N mod E ) = 0 ) ) |
120 |
117 118 119
|
syl2anc |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( E || N <-> ( N mod E ) = 0 ) ) |
121 |
116 120
|
sylibrd |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( A. x e. X ( N .x. x ) = .0. -> E || N ) ) |
122 |
61 121
|
sylan2 |
|- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. { y e. NN | A. x e. X ( y .x. x ) = .0. } ) -> ( A. x e. X ( N .x. x ) = .0. -> E || N ) ) |
123 |
|
eqid |
|- { y e. NN | A. x e. X ( y .x. x ) = .0. } = { y e. NN | A. x e. X ( y .x. x ) = .0. } |
124 |
1 3 4 2 123
|
gexlem1 |
|- ( G e. Grp -> ( ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) \/ E e. { y e. NN | A. x e. X ( y .x. x ) = .0. } ) ) |
125 |
124
|
adantr |
|- ( ( G e. Grp /\ N e. ZZ ) -> ( ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) \/ E e. { y e. NN | A. x e. X ( y .x. x ) = .0. } ) ) |
126 |
60 122 125
|
mpjaodan |
|- ( ( G e. Grp /\ N e. ZZ ) -> ( A. x e. X ( N .x. x ) = .0. -> E || N ) ) |
127 |
8 126
|
impbid |
|- ( ( G e. Grp /\ N e. ZZ ) -> ( E || N <-> A. x e. X ( N .x. x ) = .0. ) ) |