Step |
Hyp |
Ref |
Expression |
1 |
|
gexcl.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
gexcl.2 |
⊢ 𝐸 = ( gEx ‘ 𝐺 ) |
3 |
|
gexid.3 |
⊢ · = ( .g ‘ 𝐺 ) |
4 |
|
gexid.4 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
5 |
1 2 3 4
|
gexdvdsi |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁 ) → ( 𝑁 · 𝑥 ) = 0 ) |
6 |
5
|
3expia |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( 𝐸 ∥ 𝑁 → ( 𝑁 · 𝑥 ) = 0 ) ) |
7 |
6
|
ralrimdva |
⊢ ( 𝐺 ∈ Grp → ( 𝐸 ∥ 𝑁 → ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) → ( 𝐸 ∥ 𝑁 → ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 ) ) |
9 |
|
noel |
⊢ ¬ ( abs ‘ 𝑁 ) ∈ ∅ |
10 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) |
11 |
10
|
eleq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( ( abs ‘ 𝑁 ) ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ↔ ( abs ‘ 𝑁 ) ∈ ∅ ) ) |
12 |
|
oveq1 |
⊢ ( 𝑦 = ( abs ‘ 𝑁 ) → ( 𝑦 · 𝑥 ) = ( ( abs ‘ 𝑁 ) · 𝑥 ) ) |
13 |
12
|
eqeq1d |
⊢ ( 𝑦 = ( abs ‘ 𝑁 ) → ( ( 𝑦 · 𝑥 ) = 0 ↔ ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ) ) |
14 |
13
|
ralbidv |
⊢ ( 𝑦 = ( abs ‘ 𝑁 ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ 𝑋 ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ) ) |
15 |
14
|
elrab |
⊢ ( ( abs ‘ 𝑁 ) ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ↔ ( ( abs ‘ 𝑁 ) ∈ ℕ ∧ ∀ 𝑥 ∈ 𝑋 ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ) ) |
16 |
11 15
|
bitr3di |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( ( abs ‘ 𝑁 ) ∈ ∅ ↔ ( ( abs ‘ 𝑁 ) ∈ ℕ ∧ ∀ 𝑥 ∈ 𝑋 ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ) ) ) |
17 |
16
|
rbaibd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ) → ( ( abs ‘ 𝑁 ) ∈ ∅ ↔ ( abs ‘ 𝑁 ) ∈ ℕ ) ) |
18 |
9 17
|
mtbii |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ) → ¬ ( abs ‘ 𝑁 ) ∈ ℕ ) |
19 |
18
|
ex |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( ∀ 𝑥 ∈ 𝑋 ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 → ¬ ( abs ‘ 𝑁 ) ∈ ℕ ) ) |
20 |
|
nn0abscl |
⊢ ( 𝑁 ∈ ℤ → ( abs ‘ 𝑁 ) ∈ ℕ0 ) |
21 |
20
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( abs ‘ 𝑁 ) ∈ ℕ0 ) |
22 |
|
elnn0 |
⊢ ( ( abs ‘ 𝑁 ) ∈ ℕ0 ↔ ( ( abs ‘ 𝑁 ) ∈ ℕ ∨ ( abs ‘ 𝑁 ) = 0 ) ) |
23 |
21 22
|
sylib |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( ( abs ‘ 𝑁 ) ∈ ℕ ∨ ( abs ‘ 𝑁 ) = 0 ) ) |
24 |
23
|
ord |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( ¬ ( abs ‘ 𝑁 ) ∈ ℕ → ( abs ‘ 𝑁 ) = 0 ) ) |
25 |
19 24
|
syld |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( ∀ 𝑥 ∈ 𝑋 ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 → ( abs ‘ 𝑁 ) = 0 ) ) |
26 |
|
simpr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( abs ‘ 𝑁 ) = 𝑁 ) → ( abs ‘ 𝑁 ) = 𝑁 ) |
27 |
26
|
oveq1d |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( abs ‘ 𝑁 ) = 𝑁 ) → ( ( abs ‘ 𝑁 ) · 𝑥 ) = ( 𝑁 · 𝑥 ) ) |
28 |
27
|
eqeq1d |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( abs ‘ 𝑁 ) = 𝑁 ) → ( ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ↔ ( 𝑁 · 𝑥 ) = 0 ) ) |
29 |
|
oveq1 |
⊢ ( ( abs ‘ 𝑁 ) = - 𝑁 → ( ( abs ‘ 𝑁 ) · 𝑥 ) = ( - 𝑁 · 𝑥 ) ) |
30 |
29
|
eqeq1d |
⊢ ( ( abs ‘ 𝑁 ) = - 𝑁 → ( ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ↔ ( - 𝑁 · 𝑥 ) = 0 ) ) |
31 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
32 |
1 3 31
|
mulgneg |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ 𝑋 ) → ( - 𝑁 · 𝑥 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑁 · 𝑥 ) ) ) |
33 |
32
|
3expa |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → ( - 𝑁 · 𝑥 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑁 · 𝑥 ) ) ) |
34 |
4 31
|
grpinvid |
⊢ ( 𝐺 ∈ Grp → ( ( invg ‘ 𝐺 ) ‘ 0 ) = 0 ) |
35 |
34
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 0 ) = 0 ) |
36 |
35
|
eqcomd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → 0 = ( ( invg ‘ 𝐺 ) ‘ 0 ) ) |
37 |
33 36
|
eqeq12d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( - 𝑁 · 𝑥 ) = 0 ↔ ( ( invg ‘ 𝐺 ) ‘ ( 𝑁 · 𝑥 ) ) = ( ( invg ‘ 𝐺 ) ‘ 0 ) ) ) |
38 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
39 |
1 3
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 · 𝑥 ) ∈ 𝑋 ) |
40 |
39
|
3expa |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 · 𝑥 ) ∈ 𝑋 ) |
41 |
1 4
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝑋 ) |
42 |
41
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → 0 ∈ 𝑋 ) |
43 |
1 31 38 40 42
|
grpinv11 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑁 · 𝑥 ) ) = ( ( invg ‘ 𝐺 ) ‘ 0 ) ↔ ( 𝑁 · 𝑥 ) = 0 ) ) |
44 |
37 43
|
bitrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( - 𝑁 · 𝑥 ) = 0 ↔ ( 𝑁 · 𝑥 ) = 0 ) ) |
45 |
30 44
|
sylan9bbr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( abs ‘ 𝑁 ) = - 𝑁 ) → ( ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ↔ ( 𝑁 · 𝑥 ) = 0 ) ) |
46 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
47 |
46
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → 𝑁 ∈ ℝ ) |
48 |
47
|
absord |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( abs ‘ 𝑁 ) = 𝑁 ∨ ( abs ‘ 𝑁 ) = - 𝑁 ) ) |
49 |
28 45 48
|
mpjaodan |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ↔ ( 𝑁 · 𝑥 ) = 0 ) ) |
50 |
49
|
ralbidva |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) → ( ∀ 𝑥 ∈ 𝑋 ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 ) ) |
51 |
50
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( ∀ 𝑥 ∈ 𝑋 ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 ) ) |
52 |
|
0dvds |
⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 ↔ 𝑁 = 0 ) ) |
53 |
52
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( 0 ∥ 𝑁 ↔ 𝑁 = 0 ) ) |
54 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → 𝐸 = 0 ) |
55 |
54
|
breq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( 𝐸 ∥ 𝑁 ↔ 0 ∥ 𝑁 ) ) |
56 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
57 |
56
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → 𝑁 ∈ ℂ ) |
58 |
57
|
abs00ad |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( ( abs ‘ 𝑁 ) = 0 ↔ 𝑁 = 0 ) ) |
59 |
53 55 58
|
3bitr4rd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( ( abs ‘ 𝑁 ) = 0 ↔ 𝐸 ∥ 𝑁 ) ) |
60 |
25 51 59
|
3imtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 → 𝐸 ∥ 𝑁 ) ) |
61 |
|
elrabi |
⊢ ( 𝐸 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } → 𝐸 ∈ ℕ ) |
62 |
46
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℝ ) |
63 |
|
nnrp |
⊢ ( 𝐸 ∈ ℕ → 𝐸 ∈ ℝ+ ) |
64 |
|
modval |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+ ) → ( 𝑁 mod 𝐸 ) = ( 𝑁 − ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) ) ) |
65 |
62 63 64
|
syl2an |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( 𝑁 mod 𝐸 ) = ( 𝑁 − ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) ) ) |
66 |
65
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → ( 𝑁 mod 𝐸 ) = ( 𝑁 − ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) ) ) |
67 |
66
|
oveq1d |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = ( ( 𝑁 − ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) ) · 𝑥 ) ) |
68 |
|
simplll |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → 𝐺 ∈ Grp ) |
69 |
|
simpllr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → 𝑁 ∈ ℤ ) |
70 |
|
nnz |
⊢ ( 𝐸 ∈ ℕ → 𝐸 ∈ ℤ ) |
71 |
70
|
ad2antlr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → 𝐸 ∈ ℤ ) |
72 |
|
rerpdivcl |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+ ) → ( 𝑁 / 𝐸 ) ∈ ℝ ) |
73 |
62 63 72
|
syl2an |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( 𝑁 / 𝐸 ) ∈ ℝ ) |
74 |
73
|
flcld |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ∈ ℤ ) |
75 |
74
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ∈ ℤ ) |
76 |
71 75
|
zmulcld |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) ∈ ℤ ) |
77 |
|
simprl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → 𝑥 ∈ 𝑋 ) |
78 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
79 |
1 3 78
|
mulgsubdir |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) ∈ ℤ ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝑁 − ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) ) · 𝑥 ) = ( ( 𝑁 · 𝑥 ) ( -g ‘ 𝐺 ) ( ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) · 𝑥 ) ) ) |
80 |
68 69 76 77 79
|
syl13anc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → ( ( 𝑁 − ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) ) · 𝑥 ) = ( ( 𝑁 · 𝑥 ) ( -g ‘ 𝐺 ) ( ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) · 𝑥 ) ) ) |
81 |
|
simprr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → ( 𝑁 · 𝑥 ) = 0 ) |
82 |
|
dvdsmul1 |
⊢ ( ( 𝐸 ∈ ℤ ∧ ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ∈ ℤ ) → 𝐸 ∥ ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) ) |
83 |
71 75 82
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → 𝐸 ∥ ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) ) |
84 |
1 2 3 4
|
gexdvdsi |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐸 ∥ ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) ) → ( ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) · 𝑥 ) = 0 ) |
85 |
68 77 83 84
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → ( ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) · 𝑥 ) = 0 ) |
86 |
81 85
|
oveq12d |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → ( ( 𝑁 · 𝑥 ) ( -g ‘ 𝐺 ) ( ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) · 𝑥 ) ) = ( 0 ( -g ‘ 𝐺 ) 0 ) ) |
87 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → 𝐺 ∈ Grp ) |
88 |
1 4 78
|
grpsubid |
⊢ ( ( 𝐺 ∈ Grp ∧ 0 ∈ 𝑋 ) → ( 0 ( -g ‘ 𝐺 ) 0 ) = 0 ) |
89 |
87 41 88
|
syl2anc2 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( 0 ( -g ‘ 𝐺 ) 0 ) = 0 ) |
90 |
89
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → ( 0 ( -g ‘ 𝐺 ) 0 ) = 0 ) |
91 |
86 90
|
eqtrd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → ( ( 𝑁 · 𝑥 ) ( -g ‘ 𝐺 ) ( ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) · 𝑥 ) ) = 0 ) |
92 |
67 80 91
|
3eqtrd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = 0 ) |
93 |
92
|
expr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 · 𝑥 ) = 0 → ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = 0 ) ) |
94 |
93
|
ralimdva |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 → ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = 0 ) ) |
95 |
|
modlt |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+ ) → ( 𝑁 mod 𝐸 ) < 𝐸 ) |
96 |
62 63 95
|
syl2an |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( 𝑁 mod 𝐸 ) < 𝐸 ) |
97 |
|
zmodcl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐸 ∈ ℕ ) → ( 𝑁 mod 𝐸 ) ∈ ℕ0 ) |
98 |
97
|
adantll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( 𝑁 mod 𝐸 ) ∈ ℕ0 ) |
99 |
98
|
nn0red |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( 𝑁 mod 𝐸 ) ∈ ℝ ) |
100 |
|
nnre |
⊢ ( 𝐸 ∈ ℕ → 𝐸 ∈ ℝ ) |
101 |
100
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → 𝐸 ∈ ℝ ) |
102 |
99 101
|
ltnled |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( ( 𝑁 mod 𝐸 ) < 𝐸 ↔ ¬ 𝐸 ≤ ( 𝑁 mod 𝐸 ) ) ) |
103 |
96 102
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ¬ 𝐸 ≤ ( 𝑁 mod 𝐸 ) ) |
104 |
1 2 3 4
|
gexlem2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 mod 𝐸 ) ∈ ℕ ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = 0 ) → 𝐸 ∈ ( 1 ... ( 𝑁 mod 𝐸 ) ) ) |
105 |
|
elfzle2 |
⊢ ( 𝐸 ∈ ( 1 ... ( 𝑁 mod 𝐸 ) ) → 𝐸 ≤ ( 𝑁 mod 𝐸 ) ) |
106 |
104 105
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 mod 𝐸 ) ∈ ℕ ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = 0 ) → 𝐸 ≤ ( 𝑁 mod 𝐸 ) ) |
107 |
106
|
3expia |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 mod 𝐸 ) ∈ ℕ ) → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = 0 → 𝐸 ≤ ( 𝑁 mod 𝐸 ) ) ) |
108 |
107
|
impancom |
⊢ ( ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = 0 ) → ( ( 𝑁 mod 𝐸 ) ∈ ℕ → 𝐸 ≤ ( 𝑁 mod 𝐸 ) ) ) |
109 |
108
|
con3d |
⊢ ( ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = 0 ) → ( ¬ 𝐸 ≤ ( 𝑁 mod 𝐸 ) → ¬ ( 𝑁 mod 𝐸 ) ∈ ℕ ) ) |
110 |
109
|
ex |
⊢ ( 𝐺 ∈ Grp → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = 0 → ( ¬ 𝐸 ≤ ( 𝑁 mod 𝐸 ) → ¬ ( 𝑁 mod 𝐸 ) ∈ ℕ ) ) ) |
111 |
110
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = 0 → ( ¬ 𝐸 ≤ ( 𝑁 mod 𝐸 ) → ¬ ( 𝑁 mod 𝐸 ) ∈ ℕ ) ) ) |
112 |
103 111
|
mpid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = 0 → ¬ ( 𝑁 mod 𝐸 ) ∈ ℕ ) ) |
113 |
|
elnn0 |
⊢ ( ( 𝑁 mod 𝐸 ) ∈ ℕ0 ↔ ( ( 𝑁 mod 𝐸 ) ∈ ℕ ∨ ( 𝑁 mod 𝐸 ) = 0 ) ) |
114 |
98 113
|
sylib |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( ( 𝑁 mod 𝐸 ) ∈ ℕ ∨ ( 𝑁 mod 𝐸 ) = 0 ) ) |
115 |
114
|
ord |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( ¬ ( 𝑁 mod 𝐸 ) ∈ ℕ → ( 𝑁 mod 𝐸 ) = 0 ) ) |
116 |
94 112 115
|
3syld |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 → ( 𝑁 mod 𝐸 ) = 0 ) ) |
117 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → 𝐸 ∈ ℕ ) |
118 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → 𝑁 ∈ ℤ ) |
119 |
|
dvdsval3 |
⊢ ( ( 𝐸 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝐸 ∥ 𝑁 ↔ ( 𝑁 mod 𝐸 ) = 0 ) ) |
120 |
117 118 119
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( 𝐸 ∥ 𝑁 ↔ ( 𝑁 mod 𝐸 ) = 0 ) ) |
121 |
116 120
|
sylibrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 → 𝐸 ∥ 𝑁 ) ) |
122 |
61 121
|
sylan2 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 → 𝐸 ∥ 𝑁 ) ) |
123 |
|
eqid |
⊢ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } |
124 |
1 3 4 2 123
|
gexlem1 |
⊢ ( 𝐺 ∈ Grp → ( ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ∨ 𝐸 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) ) |
125 |
124
|
adantr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) → ( ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ∨ 𝐸 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) ) |
126 |
60 122 125
|
mpjaodan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 → 𝐸 ∥ 𝑁 ) ) |
127 |
8 126
|
impbid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) → ( 𝐸 ∥ 𝑁 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 ) ) |