| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cygctb.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 | 1 | grpbn0 | ⊢ ( 𝐺  ∈  Grp  →  𝐵  ≠  ∅ ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  <  6 )  →  𝐵  ≠  ∅ ) | 
						
							| 4 |  | 6re | ⊢ 6  ∈  ℝ | 
						
							| 5 |  | rexr | ⊢ ( 6  ∈  ℝ  →  6  ∈  ℝ* ) | 
						
							| 6 |  | pnfnlt | ⊢ ( 6  ∈  ℝ*  →  ¬  +∞  <  6 ) | 
						
							| 7 | 4 5 6 | mp2b | ⊢ ¬  +∞  <  6 | 
						
							| 8 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 9 | 8 | a1i | ⊢ ( 𝐺  ∈  Grp  →  𝐵  ∈  V ) | 
						
							| 10 |  | hashinf | ⊢ ( ( 𝐵  ∈  V  ∧  ¬  𝐵  ∈  Fin )  →  ( ♯ ‘ 𝐵 )  =  +∞ ) | 
						
							| 11 | 9 10 | sylan | ⊢ ( ( 𝐺  ∈  Grp  ∧  ¬  𝐵  ∈  Fin )  →  ( ♯ ‘ 𝐵 )  =  +∞ ) | 
						
							| 12 | 11 | breq1d | ⊢ ( ( 𝐺  ∈  Grp  ∧  ¬  𝐵  ∈  Fin )  →  ( ( ♯ ‘ 𝐵 )  <  6  ↔  +∞  <  6 ) ) | 
						
							| 13 | 12 | biimpd | ⊢ ( ( 𝐺  ∈  Grp  ∧  ¬  𝐵  ∈  Fin )  →  ( ( ♯ ‘ 𝐵 )  <  6  →  +∞  <  6 ) ) | 
						
							| 14 | 13 | impancom | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  <  6 )  →  ( ¬  𝐵  ∈  Fin  →  +∞  <  6 ) ) | 
						
							| 15 | 7 14 | mt3i | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  <  6 )  →  𝐵  ∈  Fin ) | 
						
							| 16 |  | hashnncl | ⊢ ( 𝐵  ∈  Fin  →  ( ( ♯ ‘ 𝐵 )  ∈  ℕ  ↔  𝐵  ≠  ∅ ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  <  6 )  →  ( ( ♯ ‘ 𝐵 )  ∈  ℕ  ↔  𝐵  ≠  ∅ ) ) | 
						
							| 18 | 3 17 | mpbird | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  <  6 )  →  ( ♯ ‘ 𝐵 )  ∈  ℕ ) | 
						
							| 19 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 20 | 18 19 | eleqtrdi | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  <  6 )  →  ( ♯ ‘ 𝐵 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 21 |  | 6nn | ⊢ 6  ∈  ℕ | 
						
							| 22 | 21 | nnzi | ⊢ 6  ∈  ℤ | 
						
							| 23 | 22 | a1i | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  <  6 )  →  6  ∈  ℤ ) | 
						
							| 24 |  | simpr | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  <  6 )  →  ( ♯ ‘ 𝐵 )  <  6 ) | 
						
							| 25 |  | elfzo2 | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 6 )  ↔  ( ( ♯ ‘ 𝐵 )  ∈  ( ℤ≥ ‘ 1 )  ∧  6  ∈  ℤ  ∧  ( ♯ ‘ 𝐵 )  <  6 ) ) | 
						
							| 26 | 20 23 24 25 | syl3anbrc | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  <  6 )  →  ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 6 ) ) | 
						
							| 27 |  | df-6 | ⊢ 6  =  ( 5  +  1 ) | 
						
							| 28 | 27 | oveq2i | ⊢ ( 1 ..^ 6 )  =  ( 1 ..^ ( 5  +  1 ) ) | 
						
							| 29 | 28 | eleq2i | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 6 )  ↔  ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ ( 5  +  1 ) ) ) | 
						
							| 30 |  | 5nn | ⊢ 5  ∈  ℕ | 
						
							| 31 | 30 19 | eleqtri | ⊢ 5  ∈  ( ℤ≥ ‘ 1 ) | 
						
							| 32 |  | fzosplitsni | ⊢ ( 5  ∈  ( ℤ≥ ‘ 1 )  →  ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ ( 5  +  1 ) )  ↔  ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 5 )  ∨  ( ♯ ‘ 𝐵 )  =  5 ) ) ) | 
						
							| 33 | 31 32 | ax-mp | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ ( 5  +  1 ) )  ↔  ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 5 )  ∨  ( ♯ ‘ 𝐵 )  =  5 ) ) | 
						
							| 34 | 29 33 | bitri | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 6 )  ↔  ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 5 )  ∨  ( ♯ ‘ 𝐵 )  =  5 ) ) | 
						
							| 35 |  | df-5 | ⊢ 5  =  ( 4  +  1 ) | 
						
							| 36 | 35 | oveq2i | ⊢ ( 1 ..^ 5 )  =  ( 1 ..^ ( 4  +  1 ) ) | 
						
							| 37 | 36 | eleq2i | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 5 )  ↔  ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ ( 4  +  1 ) ) ) | 
						
							| 38 |  | 4nn | ⊢ 4  ∈  ℕ | 
						
							| 39 | 38 19 | eleqtri | ⊢ 4  ∈  ( ℤ≥ ‘ 1 ) | 
						
							| 40 |  | fzosplitsni | ⊢ ( 4  ∈  ( ℤ≥ ‘ 1 )  →  ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ ( 4  +  1 ) )  ↔  ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 4 )  ∨  ( ♯ ‘ 𝐵 )  =  4 ) ) ) | 
						
							| 41 | 39 40 | ax-mp | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ ( 4  +  1 ) )  ↔  ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 4 )  ∨  ( ♯ ‘ 𝐵 )  =  4 ) ) | 
						
							| 42 | 37 41 | bitri | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 5 )  ↔  ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 4 )  ∨  ( ♯ ‘ 𝐵 )  =  4 ) ) | 
						
							| 43 |  | df-4 | ⊢ 4  =  ( 3  +  1 ) | 
						
							| 44 | 43 | oveq2i | ⊢ ( 1 ..^ 4 )  =  ( 1 ..^ ( 3  +  1 ) ) | 
						
							| 45 | 44 | eleq2i | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 4 )  ↔  ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ ( 3  +  1 ) ) ) | 
						
							| 46 |  | 3nn | ⊢ 3  ∈  ℕ | 
						
							| 47 | 46 19 | eleqtri | ⊢ 3  ∈  ( ℤ≥ ‘ 1 ) | 
						
							| 48 |  | fzosplitsni | ⊢ ( 3  ∈  ( ℤ≥ ‘ 1 )  →  ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ ( 3  +  1 ) )  ↔  ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 3 )  ∨  ( ♯ ‘ 𝐵 )  =  3 ) ) ) | 
						
							| 49 | 47 48 | ax-mp | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ ( 3  +  1 ) )  ↔  ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 3 )  ∨  ( ♯ ‘ 𝐵 )  =  3 ) ) | 
						
							| 50 | 45 49 | bitri | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 4 )  ↔  ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 3 )  ∨  ( ♯ ‘ 𝐵 )  =  3 ) ) | 
						
							| 51 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 52 | 51 | oveq2i | ⊢ ( 1 ..^ 3 )  =  ( 1 ..^ ( 2  +  1 ) ) | 
						
							| 53 | 52 | eleq2i | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 3 )  ↔  ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ ( 2  +  1 ) ) ) | 
						
							| 54 |  | 2eluzge1 | ⊢ 2  ∈  ( ℤ≥ ‘ 1 ) | 
						
							| 55 |  | fzosplitsni | ⊢ ( 2  ∈  ( ℤ≥ ‘ 1 )  →  ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ ( 2  +  1 ) )  ↔  ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 2 )  ∨  ( ♯ ‘ 𝐵 )  =  2 ) ) ) | 
						
							| 56 | 54 55 | ax-mp | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ ( 2  +  1 ) )  ↔  ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 2 )  ∨  ( ♯ ‘ 𝐵 )  =  2 ) ) | 
						
							| 57 | 53 56 | bitri | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 3 )  ↔  ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 2 )  ∨  ( ♯ ‘ 𝐵 )  =  2 ) ) | 
						
							| 58 |  | elsni | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  { 1 }  →  ( ♯ ‘ 𝐵 )  =  1 ) | 
						
							| 59 |  | fzo12sn | ⊢ ( 1 ..^ 2 )  =  { 1 } | 
						
							| 60 | 58 59 | eleq2s | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 2 )  →  ( ♯ ‘ 𝐵 )  =  1 ) | 
						
							| 61 | 60 | adantl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 2 ) )  →  ( ♯ ‘ 𝐵 )  =  1 ) | 
						
							| 62 |  | hash1 | ⊢ ( ♯ ‘ 1o )  =  1 | 
						
							| 63 | 61 62 | eqtr4di | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 2 ) )  →  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 1o ) ) | 
						
							| 64 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 65 | 61 64 | eqeltrdi | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 2 ) )  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 66 |  | hashclb | ⊢ ( 𝐵  ∈  V  →  ( 𝐵  ∈  Fin  ↔  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) ) | 
						
							| 67 | 8 66 | ax-mp | ⊢ ( 𝐵  ∈  Fin  ↔  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 68 | 65 67 | sylibr | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 2 ) )  →  𝐵  ∈  Fin ) | 
						
							| 69 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 70 |  | nnfi | ⊢ ( 1o  ∈  ω  →  1o  ∈  Fin ) | 
						
							| 71 | 69 70 | ax-mp | ⊢ 1o  ∈  Fin | 
						
							| 72 |  | hashen | ⊢ ( ( 𝐵  ∈  Fin  ∧  1o  ∈  Fin )  →  ( ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 1o )  ↔  𝐵  ≈  1o ) ) | 
						
							| 73 | 68 71 72 | sylancl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 2 ) )  →  ( ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 1o )  ↔  𝐵  ≈  1o ) ) | 
						
							| 74 | 63 73 | mpbid | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 2 ) )  →  𝐵  ≈  1o ) | 
						
							| 75 | 1 | 0cyg | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ≈  1o )  →  𝐺  ∈  CycGrp ) | 
						
							| 76 |  | cygabl | ⊢ ( 𝐺  ∈  CycGrp  →  𝐺  ∈  Abel ) | 
						
							| 77 | 75 76 | syl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ≈  1o )  →  𝐺  ∈  Abel ) | 
						
							| 78 | 74 77 | syldan | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 2 ) )  →  𝐺  ∈  Abel ) | 
						
							| 79 | 78 | ex | ⊢ ( 𝐺  ∈  Grp  →  ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 2 )  →  𝐺  ∈  Abel ) ) | 
						
							| 80 |  | id | ⊢ ( ( ♯ ‘ 𝐵 )  =  2  →  ( ♯ ‘ 𝐵 )  =  2 ) | 
						
							| 81 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 82 | 80 81 | eqeltrdi | ⊢ ( ( ♯ ‘ 𝐵 )  =  2  →  ( ♯ ‘ 𝐵 )  ∈  ℙ ) | 
						
							| 83 | 1 | prmcyg | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  ∈  ℙ )  →  𝐺  ∈  CycGrp ) | 
						
							| 84 | 83 76 | syl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  ∈  ℙ )  →  𝐺  ∈  Abel ) | 
						
							| 85 | 84 | ex | ⊢ ( 𝐺  ∈  Grp  →  ( ( ♯ ‘ 𝐵 )  ∈  ℙ  →  𝐺  ∈  Abel ) ) | 
						
							| 86 | 82 85 | syl5 | ⊢ ( 𝐺  ∈  Grp  →  ( ( ♯ ‘ 𝐵 )  =  2  →  𝐺  ∈  Abel ) ) | 
						
							| 87 | 79 86 | jaod | ⊢ ( 𝐺  ∈  Grp  →  ( ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 2 )  ∨  ( ♯ ‘ 𝐵 )  =  2 )  →  𝐺  ∈  Abel ) ) | 
						
							| 88 | 57 87 | biimtrid | ⊢ ( 𝐺  ∈  Grp  →  ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 3 )  →  𝐺  ∈  Abel ) ) | 
						
							| 89 |  | id | ⊢ ( ( ♯ ‘ 𝐵 )  =  3  →  ( ♯ ‘ 𝐵 )  =  3 ) | 
						
							| 90 |  | 3prm | ⊢ 3  ∈  ℙ | 
						
							| 91 | 89 90 | eqeltrdi | ⊢ ( ( ♯ ‘ 𝐵 )  =  3  →  ( ♯ ‘ 𝐵 )  ∈  ℙ ) | 
						
							| 92 | 91 85 | syl5 | ⊢ ( 𝐺  ∈  Grp  →  ( ( ♯ ‘ 𝐵 )  =  3  →  𝐺  ∈  Abel ) ) | 
						
							| 93 | 88 92 | jaod | ⊢ ( 𝐺  ∈  Grp  →  ( ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 3 )  ∨  ( ♯ ‘ 𝐵 )  =  3 )  →  𝐺  ∈  Abel ) ) | 
						
							| 94 | 50 93 | biimtrid | ⊢ ( 𝐺  ∈  Grp  →  ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 4 )  →  𝐺  ∈  Abel ) ) | 
						
							| 95 |  | simpl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  →  𝐺  ∈  Grp ) | 
						
							| 96 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 97 |  | eqid | ⊢ ( gEx ‘ 𝐺 )  =  ( gEx ‘ 𝐺 ) | 
						
							| 98 |  | eqid | ⊢ ( od ‘ 𝐺 )  =  ( od ‘ 𝐺 ) | 
						
							| 99 | 1 97 98 | gexdvds2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  2  ∈  ℤ )  →  ( ( gEx ‘ 𝐺 )  ∥  2  ↔  ∀ 𝑥  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) ) | 
						
							| 100 | 95 96 99 | sylancl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  →  ( ( gEx ‘ 𝐺 )  ∥  2  ↔  ∀ 𝑥  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) ) | 
						
							| 101 | 1 97 | gex2abl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( gEx ‘ 𝐺 )  ∥  2 )  →  𝐺  ∈  Abel ) | 
						
							| 102 | 101 | ex | ⊢ ( 𝐺  ∈  Grp  →  ( ( gEx ‘ 𝐺 )  ∥  2  →  𝐺  ∈  Abel ) ) | 
						
							| 103 | 102 | adantr | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  →  ( ( gEx ‘ 𝐺 )  ∥  2  →  𝐺  ∈  Abel ) ) | 
						
							| 104 | 100 103 | sylbird | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  →  ( ∀ 𝑥  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2  →  𝐺  ∈  Abel ) ) | 
						
							| 105 |  | rexnal | ⊢ ( ∃ 𝑥  ∈  𝐵 ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2  ↔  ¬  ∀ 𝑥  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) | 
						
							| 106 | 95 | adantr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  𝐺  ∈  Grp ) | 
						
							| 107 |  | simprl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 108 | 1 98 | odcl | ⊢ ( 𝑥  ∈  𝐵  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 109 | 108 | ad2antrl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 110 |  | 4nn0 | ⊢ 4  ∈  ℕ0 | 
						
							| 111 | 110 | a1i | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  4  ∈  ℕ0 ) | 
						
							| 112 |  | simpr | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  →  ( ♯ ‘ 𝐵 )  =  4 ) | 
						
							| 113 | 112 110 | eqeltrdi | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 114 | 113 67 | sylibr | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  →  𝐵  ∈  Fin ) | 
						
							| 115 | 114 | adantr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  𝐵  ∈  Fin ) | 
						
							| 116 | 1 98 | oddvds2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin  ∧  𝑥  ∈  𝐵 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 117 | 106 115 107 116 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 118 | 112 | adantr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ( ♯ ‘ 𝐵 )  =  4 ) | 
						
							| 119 | 117 118 | breqtrd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  4 ) | 
						
							| 120 |  | sq2 | ⊢ ( 2 ↑ 2 )  =  4 | 
						
							| 121 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 122 | 96 | a1i | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  2  ∈  ℤ ) | 
						
							| 123 | 1 98 | odcl2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin  ∧  𝑥  ∈  𝐵 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∈  ℕ ) | 
						
							| 124 | 106 115 107 123 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∈  ℕ ) | 
						
							| 125 |  | pccl | ⊢ ( ( 2  ∈  ℙ  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∈  ℕ )  →  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ∈  ℕ0 ) | 
						
							| 126 | 81 124 125 | sylancr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ∈  ℕ0 ) | 
						
							| 127 | 126 | nn0zd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ∈  ℤ ) | 
						
							| 128 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 129 |  | simprr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) | 
						
							| 130 |  | dvdsexp | ⊢ ( ( 2  ∈  ℤ  ∧  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ∈  ℕ0  ∧  1  ∈  ( ℤ≥ ‘ ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) )  →  ( 2 ↑ ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) )  ∥  ( 2 ↑ 1 ) ) | 
						
							| 131 | 130 | 3expia | ⊢ ( ( 2  ∈  ℤ  ∧  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ∈  ℕ0 )  →  ( 1  ∈  ( ℤ≥ ‘ ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) )  →  ( 2 ↑ ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) )  ∥  ( 2 ↑ 1 ) ) ) | 
						
							| 132 | 96 126 131 | sylancr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ( 1  ∈  ( ℤ≥ ‘ ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) )  →  ( 2 ↑ ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) )  ∥  ( 2 ↑ 1 ) ) ) | 
						
							| 133 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 134 |  | eluz | ⊢ ( ( ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ∈  ℤ  ∧  1  ∈  ℤ )  →  ( 1  ∈  ( ℤ≥ ‘ ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) )  ↔  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ≤  1 ) ) | 
						
							| 135 | 127 133 134 | sylancl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ( 1  ∈  ( ℤ≥ ‘ ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) )  ↔  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ≤  1 ) ) | 
						
							| 136 |  | oveq2 | ⊢ ( 𝑛  =  2  →  ( 2 ↑ 𝑛 )  =  ( 2 ↑ 2 ) ) | 
						
							| 137 | 136 120 | eqtrdi | ⊢ ( 𝑛  =  2  →  ( 2 ↑ 𝑛 )  =  4 ) | 
						
							| 138 | 137 | breq2d | ⊢ ( 𝑛  =  2  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  ( 2 ↑ 𝑛 )  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  4 ) ) | 
						
							| 139 | 138 | rspcev | ⊢ ( ( 2  ∈  ℕ0  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  4 )  →  ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  ( 2 ↑ 𝑛 ) ) | 
						
							| 140 | 121 119 139 | sylancr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  ( 2 ↑ 𝑛 ) ) | 
						
							| 141 |  | pcprmpw2 | ⊢ ( ( 2  ∈  ℙ  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∈  ℕ )  →  ( ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  ( 2 ↑ 𝑛 )  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 2 ↑ ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 142 | 81 124 141 | sylancr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ( ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  ( 2 ↑ 𝑛 )  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 2 ↑ ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 143 | 140 142 | mpbid | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 2 ↑ ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) | 
						
							| 144 | 143 | eqcomd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ( 2 ↑ ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) )  =  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) | 
						
							| 145 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 146 |  | exp1 | ⊢ ( 2  ∈  ℂ  →  ( 2 ↑ 1 )  =  2 ) | 
						
							| 147 | 145 146 | ax-mp | ⊢ ( 2 ↑ 1 )  =  2 | 
						
							| 148 | 147 | a1i | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ( 2 ↑ 1 )  =  2 ) | 
						
							| 149 | 144 148 | breq12d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ( ( 2 ↑ ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) )  ∥  ( 2 ↑ 1 )  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) ) | 
						
							| 150 | 132 135 149 | 3imtr3d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ( ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ≤  1  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) ) | 
						
							| 151 | 129 150 | mtod | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ¬  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ≤  1 ) | 
						
							| 152 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 153 | 126 | nn0red | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 154 |  | ltnle | ⊢ ( ( 1  ∈  ℝ  ∧  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ∈  ℝ )  →  ( 1  <  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ↔  ¬  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ≤  1 ) ) | 
						
							| 155 | 152 153 154 | sylancr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ( 1  <  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ↔  ¬  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ≤  1 ) ) | 
						
							| 156 | 151 155 | mpbird | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  1  <  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) | 
						
							| 157 |  | nn0ltp1le | ⊢ ( ( 1  ∈  ℕ0  ∧  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ∈  ℕ0 )  →  ( 1  <  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ↔  ( 1  +  1 )  ≤  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) | 
						
							| 158 | 64 126 157 | sylancr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ( 1  <  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ↔  ( 1  +  1 )  ≤  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) | 
						
							| 159 | 156 158 | mpbid | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ( 1  +  1 )  ≤  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) | 
						
							| 160 | 128 159 | eqbrtrid | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  2  ≤  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) | 
						
							| 161 |  | eluz2 | ⊢ ( ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ∈  ℤ  ∧  2  ≤  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) | 
						
							| 162 | 122 127 160 161 | syl3anbrc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 163 |  | dvdsexp | ⊢ ( ( 2  ∈  ℤ  ∧  2  ∈  ℕ0  ∧  ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 2 ↑ 2 )  ∥  ( 2 ↑ ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) | 
						
							| 164 | 96 121 162 163 | mp3an12i | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ( 2 ↑ 2 )  ∥  ( 2 ↑ ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) | 
						
							| 165 | 120 164 | eqbrtrrid | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  4  ∥  ( 2 ↑ ( 2  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) | 
						
							| 166 | 165 143 | breqtrrd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  4  ∥  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) | 
						
							| 167 |  | dvdseq | ⊢ ( ( ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∈  ℕ0  ∧  4  ∈  ℕ0 )  ∧  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  4  ∧  4  ∥  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  4 ) | 
						
							| 168 | 109 111 119 166 167 | syl22anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  4 ) | 
						
							| 169 | 168 118 | eqtr4d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 170 | 1 98 106 107 169 | iscygodd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  𝐺  ∈  CycGrp ) | 
						
							| 171 | 170 76 | syl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  ∧  ( 𝑥  ∈  𝐵  ∧  ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2 ) )  →  𝐺  ∈  Abel ) | 
						
							| 172 | 171 | rexlimdvaa | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  →  ( ∃ 𝑥  ∈  𝐵 ¬  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2  →  𝐺  ∈  Abel ) ) | 
						
							| 173 | 105 172 | biimtrrid | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  →  ( ¬  ∀ 𝑥  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  2  →  𝐺  ∈  Abel ) ) | 
						
							| 174 | 104 173 | pm2.61d | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  =  4 )  →  𝐺  ∈  Abel ) | 
						
							| 175 | 174 | ex | ⊢ ( 𝐺  ∈  Grp  →  ( ( ♯ ‘ 𝐵 )  =  4  →  𝐺  ∈  Abel ) ) | 
						
							| 176 | 94 175 | jaod | ⊢ ( 𝐺  ∈  Grp  →  ( ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 4 )  ∨  ( ♯ ‘ 𝐵 )  =  4 )  →  𝐺  ∈  Abel ) ) | 
						
							| 177 | 42 176 | biimtrid | ⊢ ( 𝐺  ∈  Grp  →  ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 5 )  →  𝐺  ∈  Abel ) ) | 
						
							| 178 |  | id | ⊢ ( ( ♯ ‘ 𝐵 )  =  5  →  ( ♯ ‘ 𝐵 )  =  5 ) | 
						
							| 179 |  | 5prm | ⊢ 5  ∈  ℙ | 
						
							| 180 | 178 179 | eqeltrdi | ⊢ ( ( ♯ ‘ 𝐵 )  =  5  →  ( ♯ ‘ 𝐵 )  ∈  ℙ ) | 
						
							| 181 | 180 85 | syl5 | ⊢ ( 𝐺  ∈  Grp  →  ( ( ♯ ‘ 𝐵 )  =  5  →  𝐺  ∈  Abel ) ) | 
						
							| 182 | 177 181 | jaod | ⊢ ( 𝐺  ∈  Grp  →  ( ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 5 )  ∨  ( ♯ ‘ 𝐵 )  =  5 )  →  𝐺  ∈  Abel ) ) | 
						
							| 183 | 34 182 | biimtrid | ⊢ ( 𝐺  ∈  Grp  →  ( ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 6 )  →  𝐺  ∈  Abel ) ) | 
						
							| 184 | 183 | imp | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  ∈  ( 1 ..^ 6 ) )  →  𝐺  ∈  Abel ) | 
						
							| 185 | 26 184 | syldan | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ♯ ‘ 𝐵 )  <  6 )  →  𝐺  ∈  Abel ) |