| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cygctb.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | simpl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ≈  1o )  →  𝐺  ∈  Grp ) | 
						
							| 4 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 5 | 1 4 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →  ( 0g ‘ 𝐺 )  ∈  𝐵 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ≈  1o )  →  ( 0g ‘ 𝐺 )  ∈  𝐵 ) | 
						
							| 7 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 8 |  | en1eqsn | ⊢ ( ( ( 0g ‘ 𝐺 )  ∈  𝐵  ∧  𝐵  ≈  1o )  →  𝐵  =  { ( 0g ‘ 𝐺 ) } ) | 
						
							| 9 | 5 8 | sylan | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ≈  1o )  →  𝐵  =  { ( 0g ‘ 𝐺 ) } ) | 
						
							| 10 | 9 | eleq2d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ≈  1o )  →  ( 𝑥  ∈  𝐵  ↔  𝑥  ∈  { ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 11 | 10 | biimpa | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐵  ≈  1o )  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  { ( 0g ‘ 𝐺 ) } ) | 
						
							| 12 |  | velsn | ⊢ ( 𝑥  ∈  { ( 0g ‘ 𝐺 ) }  ↔  𝑥  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 13 | 11 12 | sylib | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐵  ≈  1o )  ∧  𝑥  ∈  𝐵 )  →  𝑥  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 14 | 1 4 2 | mulg0 | ⊢ ( ( 0g ‘ 𝐺 )  ∈  𝐵  →  ( 0 ( .g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 15 | 6 14 | syl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ≈  1o )  →  ( 0 ( .g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐵  ≈  1o )  ∧  𝑥  ∈  𝐵 )  →  ( 0 ( .g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 17 | 13 16 | eqtr4d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐵  ≈  1o )  ∧  𝑥  ∈  𝐵 )  →  𝑥  =  ( 0 ( .g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) | 
						
							| 18 |  | oveq1 | ⊢ ( 𝑛  =  0  →  ( 𝑛 ( .g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) )  =  ( 0 ( .g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) | 
						
							| 19 | 18 | rspceeqv | ⊢ ( ( 0  ∈  ℤ  ∧  𝑥  =  ( 0 ( .g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) )  →  ∃ 𝑛  ∈  ℤ 𝑥  =  ( 𝑛 ( .g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) | 
						
							| 20 | 7 17 19 | sylancr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐵  ≈  1o )  ∧  𝑥  ∈  𝐵 )  →  ∃ 𝑛  ∈  ℤ 𝑥  =  ( 𝑛 ( .g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) | 
						
							| 21 | 1 2 3 6 20 | iscygd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ≈  1o )  →  𝐺  ∈  CycGrp ) |