Metamath Proof Explorer


Theorem 0cyg

Description: The trivial group is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypothesis cygctb.1 B=BaseG
Assertion 0cyg GGrpB1𝑜GCycGrp

Proof

Step Hyp Ref Expression
1 cygctb.1 B=BaseG
2 eqid G=G
3 simpl GGrpB1𝑜GGrp
4 eqid 0G=0G
5 1 4 grpidcl GGrp0GB
6 5 adantr GGrpB1𝑜0GB
7 0z 0
8 en1eqsn 0GBB1𝑜B=0G
9 5 8 sylan GGrpB1𝑜B=0G
10 9 eleq2d GGrpB1𝑜xBx0G
11 10 biimpa GGrpB1𝑜xBx0G
12 velsn x0Gx=0G
13 11 12 sylib GGrpB1𝑜xBx=0G
14 1 4 2 mulg0 0GB0G0G=0G
15 6 14 syl GGrpB1𝑜0G0G=0G
16 15 adantr GGrpB1𝑜xB0G0G=0G
17 13 16 eqtr4d GGrpB1𝑜xBx=0G0G
18 oveq1 n=0nG0G=0G0G
19 18 rspceeqv 0x=0G0Gnx=nG0G
20 7 17 19 sylancr GGrpB1𝑜xBnx=nG0G
21 1 2 3 6 20 iscygd GGrpB1𝑜GCycGrp