Description: The trivial group is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cygctb.1 | |
|
Assertion | 0cyg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cygctb.1 | |
|
2 | eqid | |
|
3 | simpl | |
|
4 | eqid | |
|
5 | 1 4 | grpidcl | |
6 | 5 | adantr | |
7 | 0z | |
|
8 | en1eqsn | |
|
9 | 5 8 | sylan | |
10 | 9 | eleq2d | |
11 | 10 | biimpa | |
12 | velsn | |
|
13 | 11 12 | sylib | |
14 | 1 4 2 | mulg0 | |
15 | 6 14 | syl | |
16 | 15 | adantr | |
17 | 13 16 | eqtr4d | |
18 | oveq1 | |
|
19 | 18 | rspceeqv | |
20 | 7 17 19 | sylancr | |
21 | 1 2 3 6 20 | iscygd | |