| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cygctb.1 |
|- B = ( Base ` G ) |
| 2 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
| 3 |
|
simpl |
|- ( ( G e. Grp /\ B ~~ 1o ) -> G e. Grp ) |
| 4 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 5 |
1 4
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. B ) |
| 6 |
5
|
adantr |
|- ( ( G e. Grp /\ B ~~ 1o ) -> ( 0g ` G ) e. B ) |
| 7 |
|
0z |
|- 0 e. ZZ |
| 8 |
|
en1eqsn |
|- ( ( ( 0g ` G ) e. B /\ B ~~ 1o ) -> B = { ( 0g ` G ) } ) |
| 9 |
5 8
|
sylan |
|- ( ( G e. Grp /\ B ~~ 1o ) -> B = { ( 0g ` G ) } ) |
| 10 |
9
|
eleq2d |
|- ( ( G e. Grp /\ B ~~ 1o ) -> ( x e. B <-> x e. { ( 0g ` G ) } ) ) |
| 11 |
10
|
biimpa |
|- ( ( ( G e. Grp /\ B ~~ 1o ) /\ x e. B ) -> x e. { ( 0g ` G ) } ) |
| 12 |
|
velsn |
|- ( x e. { ( 0g ` G ) } <-> x = ( 0g ` G ) ) |
| 13 |
11 12
|
sylib |
|- ( ( ( G e. Grp /\ B ~~ 1o ) /\ x e. B ) -> x = ( 0g ` G ) ) |
| 14 |
1 4 2
|
mulg0 |
|- ( ( 0g ` G ) e. B -> ( 0 ( .g ` G ) ( 0g ` G ) ) = ( 0g ` G ) ) |
| 15 |
6 14
|
syl |
|- ( ( G e. Grp /\ B ~~ 1o ) -> ( 0 ( .g ` G ) ( 0g ` G ) ) = ( 0g ` G ) ) |
| 16 |
15
|
adantr |
|- ( ( ( G e. Grp /\ B ~~ 1o ) /\ x e. B ) -> ( 0 ( .g ` G ) ( 0g ` G ) ) = ( 0g ` G ) ) |
| 17 |
13 16
|
eqtr4d |
|- ( ( ( G e. Grp /\ B ~~ 1o ) /\ x e. B ) -> x = ( 0 ( .g ` G ) ( 0g ` G ) ) ) |
| 18 |
|
oveq1 |
|- ( n = 0 -> ( n ( .g ` G ) ( 0g ` G ) ) = ( 0 ( .g ` G ) ( 0g ` G ) ) ) |
| 19 |
18
|
rspceeqv |
|- ( ( 0 e. ZZ /\ x = ( 0 ( .g ` G ) ( 0g ` G ) ) ) -> E. n e. ZZ x = ( n ( .g ` G ) ( 0g ` G ) ) ) |
| 20 |
7 17 19
|
sylancr |
|- ( ( ( G e. Grp /\ B ~~ 1o ) /\ x e. B ) -> E. n e. ZZ x = ( n ( .g ` G ) ( 0g ` G ) ) ) |
| 21 |
1 2 3 6 20
|
iscygd |
|- ( ( G e. Grp /\ B ~~ 1o ) -> G e. CycGrp ) |