| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cygctb.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 3 |  | simpl |  |-  ( ( G e. Grp /\ B ~~ 1o ) -> G e. Grp ) | 
						
							| 4 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 5 | 1 4 | grpidcl |  |-  ( G e. Grp -> ( 0g ` G ) e. B ) | 
						
							| 6 | 5 | adantr |  |-  ( ( G e. Grp /\ B ~~ 1o ) -> ( 0g ` G ) e. B ) | 
						
							| 7 |  | 0z |  |-  0 e. ZZ | 
						
							| 8 |  | en1eqsn |  |-  ( ( ( 0g ` G ) e. B /\ B ~~ 1o ) -> B = { ( 0g ` G ) } ) | 
						
							| 9 | 5 8 | sylan |  |-  ( ( G e. Grp /\ B ~~ 1o ) -> B = { ( 0g ` G ) } ) | 
						
							| 10 | 9 | eleq2d |  |-  ( ( G e. Grp /\ B ~~ 1o ) -> ( x e. B <-> x e. { ( 0g ` G ) } ) ) | 
						
							| 11 | 10 | biimpa |  |-  ( ( ( G e. Grp /\ B ~~ 1o ) /\ x e. B ) -> x e. { ( 0g ` G ) } ) | 
						
							| 12 |  | velsn |  |-  ( x e. { ( 0g ` G ) } <-> x = ( 0g ` G ) ) | 
						
							| 13 | 11 12 | sylib |  |-  ( ( ( G e. Grp /\ B ~~ 1o ) /\ x e. B ) -> x = ( 0g ` G ) ) | 
						
							| 14 | 1 4 2 | mulg0 |  |-  ( ( 0g ` G ) e. B -> ( 0 ( .g ` G ) ( 0g ` G ) ) = ( 0g ` G ) ) | 
						
							| 15 | 6 14 | syl |  |-  ( ( G e. Grp /\ B ~~ 1o ) -> ( 0 ( .g ` G ) ( 0g ` G ) ) = ( 0g ` G ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( G e. Grp /\ B ~~ 1o ) /\ x e. B ) -> ( 0 ( .g ` G ) ( 0g ` G ) ) = ( 0g ` G ) ) | 
						
							| 17 | 13 16 | eqtr4d |  |-  ( ( ( G e. Grp /\ B ~~ 1o ) /\ x e. B ) -> x = ( 0 ( .g ` G ) ( 0g ` G ) ) ) | 
						
							| 18 |  | oveq1 |  |-  ( n = 0 -> ( n ( .g ` G ) ( 0g ` G ) ) = ( 0 ( .g ` G ) ( 0g ` G ) ) ) | 
						
							| 19 | 18 | rspceeqv |  |-  ( ( 0 e. ZZ /\ x = ( 0 ( .g ` G ) ( 0g ` G ) ) ) -> E. n e. ZZ x = ( n ( .g ` G ) ( 0g ` G ) ) ) | 
						
							| 20 | 7 17 19 | sylancr |  |-  ( ( ( G e. Grp /\ B ~~ 1o ) /\ x e. B ) -> E. n e. ZZ x = ( n ( .g ` G ) ( 0g ` G ) ) ) | 
						
							| 21 | 1 2 3 6 20 | iscygd |  |-  ( ( G e. Grp /\ B ~~ 1o ) -> G e. CycGrp ) |