| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cygctb.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ghmcyg.1 | ⊢ 𝐶  =  ( Base ‘ 𝐻 ) | 
						
							| 3 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 4 | 1 3 | iscyg | ⊢ ( 𝐺  ∈  CycGrp  ↔  ( 𝐺  ∈  Grp  ∧  ∃ 𝑥  ∈  𝐵 ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 ) ) | 
						
							| 5 | 4 | simprbi | ⊢ ( 𝐺  ∈  CycGrp  →  ∃ 𝑥  ∈  𝐵 ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 ) | 
						
							| 6 |  | eqid | ⊢ ( .g ‘ 𝐻 )  =  ( .g ‘ 𝐻 ) | 
						
							| 7 |  | ghmgrp2 | ⊢ ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  →  𝐻  ∈  Grp ) | 
						
							| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝐹 : 𝐵 –onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 ) )  →  𝐻  ∈  Grp ) | 
						
							| 9 |  | fof | ⊢ ( 𝐹 : 𝐵 –onto→ 𝐶  →  𝐹 : 𝐵 ⟶ 𝐶 ) | 
						
							| 10 | 9 | ad2antlr | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝐹 : 𝐵 –onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 ) )  →  𝐹 : 𝐵 ⟶ 𝐶 ) | 
						
							| 11 |  | simprl | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝐹 : 𝐵 –onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 12 | 10 11 | ffvelcdmd | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝐹 : 𝐵 –onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝐶 ) | 
						
							| 13 |  | simplr | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝐹 : 𝐵 –onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 ) )  →  𝐹 : 𝐵 –onto→ 𝐶 ) | 
						
							| 14 |  | foeq2 | ⊢ ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵  →  ( 𝐹 : ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) –onto→ 𝐶  ↔  𝐹 : 𝐵 –onto→ 𝐶 ) ) | 
						
							| 15 | 14 | ad2antll | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝐹 : 𝐵 –onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 ) )  →  ( 𝐹 : ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) –onto→ 𝐶  ↔  𝐹 : 𝐵 –onto→ 𝐶 ) ) | 
						
							| 16 | 13 15 | mpbird | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝐹 : 𝐵 –onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 ) )  →  𝐹 : ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) –onto→ 𝐶 ) | 
						
							| 17 |  | foelrn | ⊢ ( ( 𝐹 : ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) –onto→ 𝐶  ∧  𝑦  ∈  𝐶 )  →  ∃ 𝑧  ∈  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) 𝑦  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 18 | 16 17 | sylan | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝐹 : 𝐵 –onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 ) )  ∧  𝑦  ∈  𝐶 )  →  ∃ 𝑧  ∈  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) 𝑦  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 19 |  | ovex | ⊢ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 )  ∈  V | 
						
							| 20 | 19 | rgenw | ⊢ ∀ 𝑚  ∈  ℤ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 )  ∈  V | 
						
							| 21 |  | oveq1 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 )  =  ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 22 | 21 | cbvmptv | ⊢ ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  ( 𝑚  ∈  ℤ  ↦  ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 24 | 23 | eqeq2d | ⊢ ( 𝑧  =  ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 )  →  ( 𝑦  =  ( 𝐹 ‘ 𝑧 )  ↔  𝑦  =  ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) ) | 
						
							| 25 | 22 24 | rexrnmptw | ⊢ ( ∀ 𝑚  ∈  ℤ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 )  ∈  V  →  ( ∃ 𝑧  ∈  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) 𝑦  =  ( 𝐹 ‘ 𝑧 )  ↔  ∃ 𝑚  ∈  ℤ 𝑦  =  ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) ) | 
						
							| 26 | 20 25 | ax-mp | ⊢ ( ∃ 𝑧  ∈  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) 𝑦  =  ( 𝐹 ‘ 𝑧 )  ↔  ∃ 𝑚  ∈  ℤ 𝑦  =  ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 27 | 18 26 | sylib | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝐹 : 𝐵 –onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 ) )  ∧  𝑦  ∈  𝐶 )  →  ∃ 𝑚  ∈  ℤ 𝑦  =  ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 28 |  | simp-4l | ⊢ ( ( ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝐹 : 𝐵 –onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 ) )  ∧  𝑦  ∈  𝐶 )  ∧  𝑚  ∈  ℤ )  →  𝐹  ∈  ( 𝐺  GrpHom  𝐻 ) ) | 
						
							| 29 |  | simpr | ⊢ ( ( ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝐹 : 𝐵 –onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 ) )  ∧  𝑦  ∈  𝐶 )  ∧  𝑚  ∈  ℤ )  →  𝑚  ∈  ℤ ) | 
						
							| 30 | 11 | ad2antrr | ⊢ ( ( ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝐹 : 𝐵 –onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 ) )  ∧  𝑦  ∈  𝐶 )  ∧  𝑚  ∈  ℤ )  →  𝑥  ∈  𝐵 ) | 
						
							| 31 | 1 3 6 | ghmmulg | ⊢ ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑚  ∈  ℤ  ∧  𝑥  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) )  =  ( 𝑚 ( .g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 32 | 28 29 30 31 | syl3anc | ⊢ ( ( ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝐹 : 𝐵 –onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 ) )  ∧  𝑦  ∈  𝐶 )  ∧  𝑚  ∈  ℤ )  →  ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) )  =  ( 𝑚 ( .g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 33 | 32 | eqeq2d | ⊢ ( ( ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝐹 : 𝐵 –onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 ) )  ∧  𝑦  ∈  𝐶 )  ∧  𝑚  ∈  ℤ )  →  ( 𝑦  =  ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) )  ↔  𝑦  =  ( 𝑚 ( .g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 34 | 33 | rexbidva | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝐹 : 𝐵 –onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 ) )  ∧  𝑦  ∈  𝐶 )  →  ( ∃ 𝑚  ∈  ℤ 𝑦  =  ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) )  ↔  ∃ 𝑚  ∈  ℤ 𝑦  =  ( 𝑚 ( .g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 35 | 27 34 | mpbid | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝐹 : 𝐵 –onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 ) )  ∧  𝑦  ∈  𝐶 )  →  ∃ 𝑚  ∈  ℤ 𝑦  =  ( 𝑚 ( .g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 36 | 2 6 8 12 35 | iscygd | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝐹 : 𝐵 –onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 ) )  →  𝐻  ∈  CycGrp ) | 
						
							| 37 | 36 | rexlimdvaa | ⊢ ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝐹 : 𝐵 –onto→ 𝐶 )  →  ( ∃ 𝑥  ∈  𝐵 ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵  →  𝐻  ∈  CycGrp ) ) | 
						
							| 38 | 5 37 | syl5 | ⊢ ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝐹 : 𝐵 –onto→ 𝐶 )  →  ( 𝐺  ∈  CycGrp  →  𝐻  ∈  CycGrp ) ) |