Metamath Proof Explorer


Theorem ghmcyg

Description: The image of a cyclic group under a surjective group homomorphism is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses cygctb.1 B=BaseG
ghmcyg.1 C=BaseH
Assertion ghmcyg FGGrpHomHF:BontoCGCycGrpHCycGrp

Proof

Step Hyp Ref Expression
1 cygctb.1 B=BaseG
2 ghmcyg.1 C=BaseH
3 eqid G=G
4 1 3 iscyg GCycGrpGGrpxBrannnGx=B
5 4 simprbi GCycGrpxBrannnGx=B
6 eqid H=H
7 ghmgrp2 FGGrpHomHHGrp
8 7 ad2antrr FGGrpHomHF:BontoCxBrannnGx=BHGrp
9 fof F:BontoCF:BC
10 9 ad2antlr FGGrpHomHF:BontoCxBrannnGx=BF:BC
11 simprl FGGrpHomHF:BontoCxBrannnGx=BxB
12 10 11 ffvelcdmd FGGrpHomHF:BontoCxBrannnGx=BFxC
13 simplr FGGrpHomHF:BontoCxBrannnGx=BF:BontoC
14 foeq2 rannnGx=BF:rannnGxontoCF:BontoC
15 14 ad2antll FGGrpHomHF:BontoCxBrannnGx=BF:rannnGxontoCF:BontoC
16 13 15 mpbird FGGrpHomHF:BontoCxBrannnGx=BF:rannnGxontoC
17 foelrn F:rannnGxontoCyCzrannnGxy=Fz
18 16 17 sylan FGGrpHomHF:BontoCxBrannnGx=ByCzrannnGxy=Fz
19 ovex mGxV
20 19 rgenw mmGxV
21 oveq1 n=mnGx=mGx
22 21 cbvmptv nnGx=mmGx
23 fveq2 z=mGxFz=FmGx
24 23 eqeq2d z=mGxy=Fzy=FmGx
25 22 24 rexrnmptw mmGxVzrannnGxy=Fzmy=FmGx
26 20 25 ax-mp zrannnGxy=Fzmy=FmGx
27 18 26 sylib FGGrpHomHF:BontoCxBrannnGx=ByCmy=FmGx
28 simp-4l FGGrpHomHF:BontoCxBrannnGx=ByCmFGGrpHomH
29 simpr FGGrpHomHF:BontoCxBrannnGx=ByCmm
30 11 ad2antrr FGGrpHomHF:BontoCxBrannnGx=ByCmxB
31 1 3 6 ghmmulg FGGrpHomHmxBFmGx=mHFx
32 28 29 30 31 syl3anc FGGrpHomHF:BontoCxBrannnGx=ByCmFmGx=mHFx
33 32 eqeq2d FGGrpHomHF:BontoCxBrannnGx=ByCmy=FmGxy=mHFx
34 33 rexbidva FGGrpHomHF:BontoCxBrannnGx=ByCmy=FmGxmy=mHFx
35 27 34 mpbid FGGrpHomHF:BontoCxBrannnGx=ByCmy=mHFx
36 2 6 8 12 35 iscygd FGGrpHomHF:BontoCxBrannnGx=BHCycGrp
37 36 rexlimdvaa FGGrpHomHF:BontoCxBrannnGx=BHCycGrp
38 5 37 syl5 FGGrpHomHF:BontoCGCycGrpHCycGrp