| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cygctb.1 |  | 
						
							| 2 |  | ghmcyg.1 |  | 
						
							| 3 |  | eqid |  | 
						
							| 4 | 1 3 | iscyg |  | 
						
							| 5 | 4 | simprbi |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 |  | ghmgrp2 |  | 
						
							| 8 | 7 | ad2antrr |  | 
						
							| 9 |  | fof |  | 
						
							| 10 | 9 | ad2antlr |  | 
						
							| 11 |  | simprl |  | 
						
							| 12 | 10 11 | ffvelcdmd |  | 
						
							| 13 |  | simplr |  | 
						
							| 14 |  | foeq2 |  | 
						
							| 15 | 14 | ad2antll |  | 
						
							| 16 | 13 15 | mpbird |  | 
						
							| 17 |  | foelrn |  | 
						
							| 18 | 16 17 | sylan |  | 
						
							| 19 |  | ovex |  | 
						
							| 20 | 19 | rgenw |  | 
						
							| 21 |  | oveq1 |  | 
						
							| 22 | 21 | cbvmptv |  | 
						
							| 23 |  | fveq2 |  | 
						
							| 24 | 23 | eqeq2d |  | 
						
							| 25 | 22 24 | rexrnmptw |  | 
						
							| 26 | 20 25 | ax-mp |  | 
						
							| 27 | 18 26 | sylib |  | 
						
							| 28 |  | simp-4l |  | 
						
							| 29 |  | simpr |  | 
						
							| 30 | 11 | ad2antrr |  | 
						
							| 31 | 1 3 6 | ghmmulg |  | 
						
							| 32 | 28 29 30 31 | syl3anc |  | 
						
							| 33 | 32 | eqeq2d |  | 
						
							| 34 | 33 | rexbidva |  | 
						
							| 35 | 27 34 | mpbid |  | 
						
							| 36 | 2 6 8 12 35 | iscygd |  | 
						
							| 37 | 36 | rexlimdvaa |  | 
						
							| 38 | 5 37 | syl5 |  |