Description: The image of a cyclic group under a surjective group homomorphism is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cygctb.1 | |
|
ghmcyg.1 | |
||
Assertion | ghmcyg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cygctb.1 | |
|
2 | ghmcyg.1 | |
|
3 | eqid | |
|
4 | 1 3 | iscyg | |
5 | 4 | simprbi | |
6 | eqid | |
|
7 | ghmgrp2 | |
|
8 | 7 | ad2antrr | |
9 | fof | |
|
10 | 9 | ad2antlr | |
11 | simprl | |
|
12 | 10 11 | ffvelcdmd | |
13 | simplr | |
|
14 | foeq2 | |
|
15 | 14 | ad2antll | |
16 | 13 15 | mpbird | |
17 | foelrn | |
|
18 | 16 17 | sylan | |
19 | ovex | |
|
20 | 19 | rgenw | |
21 | oveq1 | |
|
22 | 21 | cbvmptv | |
23 | fveq2 | |
|
24 | 23 | eqeq2d | |
25 | 22 24 | rexrnmptw | |
26 | 20 25 | ax-mp | |
27 | 18 26 | sylib | |
28 | simp-4l | |
|
29 | simpr | |
|
30 | 11 | ad2antrr | |
31 | 1 3 6 | ghmmulg | |
32 | 28 29 30 31 | syl3anc | |
33 | 32 | eqeq2d | |
34 | 33 | rexbidva | |
35 | 27 34 | mpbid | |
36 | 2 6 8 12 35 | iscygd | |
37 | 36 | rexlimdvaa | |
38 | 5 37 | syl5 | |