Step |
Hyp |
Ref |
Expression |
1 |
|
pgrple2abl.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
2 |
1
|
symggrp |
⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Grp ) |
3 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) ≤ 2 ) → 𝐺 ∈ Grp ) |
4 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
5 |
|
hashbnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 2 ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ≤ 2 ) → 𝐴 ∈ Fin ) |
6 |
4 5
|
mp3an2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) ≤ 2 ) → 𝐴 ∈ Fin ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
8 |
1 7
|
symghash |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ ( Base ‘ 𝐺 ) ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) ) |
9 |
6 8
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) ≤ 2 ) → ( ♯ ‘ ( Base ‘ 𝐺 ) ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) ) |
10 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
11 |
6 10
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) ≤ 2 ) → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
12 |
|
faccl |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ! ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℕ ) |
13 |
11 12
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) ≤ 2 ) → ( ! ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℕ ) |
14 |
13
|
nnred |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) ≤ 2 ) → ( ! ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℝ ) |
15 |
11 11
|
nn0expcld |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) ≤ 2 ) → ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐴 ) ) ∈ ℕ0 ) |
16 |
15
|
nn0red |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) ≤ 2 ) → ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐴 ) ) ∈ ℝ ) |
17 |
|
6re |
⊢ 6 ∈ ℝ |
18 |
17
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) ≤ 2 ) → 6 ∈ ℝ ) |
19 |
|
facubnd |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ! ‘ ( ♯ ‘ 𝐴 ) ) ≤ ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐴 ) ) ) |
20 |
11 19
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) ≤ 2 ) → ( ! ‘ ( ♯ ‘ 𝐴 ) ) ≤ ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐴 ) ) ) |
21 |
|
exple2lt6 |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ≤ 2 ) → ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐴 ) ) < 6 ) |
22 |
11 21
|
sylancom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) ≤ 2 ) → ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐴 ) ) < 6 ) |
23 |
14 16 18 20 22
|
lelttrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) ≤ 2 ) → ( ! ‘ ( ♯ ‘ 𝐴 ) ) < 6 ) |
24 |
9 23
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) ≤ 2 ) → ( ♯ ‘ ( Base ‘ 𝐺 ) ) < 6 ) |
25 |
7
|
lt6abl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ ( Base ‘ 𝐺 ) ) < 6 ) → 𝐺 ∈ Abel ) |
26 |
3 24 25
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) ≤ 2 ) → 𝐺 ∈ Abel ) |