Metamath Proof Explorer


Theorem exple2lt6

Description: A nonnegative integer to the power of itself is less than 6 if it is less than or equal to 2. (Contributed by AV, 16-Mar-2019)

Ref Expression
Assertion exple2lt6 ( ( 𝑁 ∈ ℕ0𝑁 ≤ 2 ) → ( 𝑁𝑁 ) < 6 )

Proof

Step Hyp Ref Expression
1 nn0le2is012 ( ( 𝑁 ∈ ℕ0𝑁 ≤ 2 ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) )
2 id ( 𝑁 = 0 → 𝑁 = 0 )
3 2 2 oveq12d ( 𝑁 = 0 → ( 𝑁𝑁 ) = ( 0 ↑ 0 ) )
4 0exp0e1 ( 0 ↑ 0 ) = 1
5 1lt6 1 < 6
6 4 5 eqbrtri ( 0 ↑ 0 ) < 6
7 3 6 eqbrtrdi ( 𝑁 = 0 → ( 𝑁𝑁 ) < 6 )
8 id ( 𝑁 = 1 → 𝑁 = 1 )
9 8 8 oveq12d ( 𝑁 = 1 → ( 𝑁𝑁 ) = ( 1 ↑ 1 ) )
10 ax-1cn 1 ∈ ℂ
11 exp1 ( 1 ∈ ℂ → ( 1 ↑ 1 ) = 1 )
12 10 11 ax-mp ( 1 ↑ 1 ) = 1
13 12 5 eqbrtri ( 1 ↑ 1 ) < 6
14 9 13 eqbrtrdi ( 𝑁 = 1 → ( 𝑁𝑁 ) < 6 )
15 id ( 𝑁 = 2 → 𝑁 = 2 )
16 15 15 oveq12d ( 𝑁 = 2 → ( 𝑁𝑁 ) = ( 2 ↑ 2 ) )
17 sq2 ( 2 ↑ 2 ) = 4
18 4lt6 4 < 6
19 17 18 eqbrtri ( 2 ↑ 2 ) < 6
20 16 19 eqbrtrdi ( 𝑁 = 2 → ( 𝑁𝑁 ) < 6 )
21 7 14 20 3jaoi ( ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) → ( 𝑁𝑁 ) < 6 )
22 1 21 syl ( ( 𝑁 ∈ ℕ0𝑁 ≤ 2 ) → ( 𝑁𝑁 ) < 6 )