Step |
Hyp |
Ref |
Expression |
1 |
|
nn0le2is012 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2 ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) |
2 |
|
id |
⊢ ( 𝑁 = 0 → 𝑁 = 0 ) |
3 |
2 2
|
oveq12d |
⊢ ( 𝑁 = 0 → ( 𝑁 ↑ 𝑁 ) = ( 0 ↑ 0 ) ) |
4 |
|
0exp0e1 |
⊢ ( 0 ↑ 0 ) = 1 |
5 |
|
1lt6 |
⊢ 1 < 6 |
6 |
4 5
|
eqbrtri |
⊢ ( 0 ↑ 0 ) < 6 |
7 |
3 6
|
eqbrtrdi |
⊢ ( 𝑁 = 0 → ( 𝑁 ↑ 𝑁 ) < 6 ) |
8 |
|
id |
⊢ ( 𝑁 = 1 → 𝑁 = 1 ) |
9 |
8 8
|
oveq12d |
⊢ ( 𝑁 = 1 → ( 𝑁 ↑ 𝑁 ) = ( 1 ↑ 1 ) ) |
10 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
11 |
|
exp1 |
⊢ ( 1 ∈ ℂ → ( 1 ↑ 1 ) = 1 ) |
12 |
10 11
|
ax-mp |
⊢ ( 1 ↑ 1 ) = 1 |
13 |
12 5
|
eqbrtri |
⊢ ( 1 ↑ 1 ) < 6 |
14 |
9 13
|
eqbrtrdi |
⊢ ( 𝑁 = 1 → ( 𝑁 ↑ 𝑁 ) < 6 ) |
15 |
|
id |
⊢ ( 𝑁 = 2 → 𝑁 = 2 ) |
16 |
15 15
|
oveq12d |
⊢ ( 𝑁 = 2 → ( 𝑁 ↑ 𝑁 ) = ( 2 ↑ 2 ) ) |
17 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
18 |
|
4lt6 |
⊢ 4 < 6 |
19 |
17 18
|
eqbrtri |
⊢ ( 2 ↑ 2 ) < 6 |
20 |
16 19
|
eqbrtrdi |
⊢ ( 𝑁 = 2 → ( 𝑁 ↑ 𝑁 ) < 6 ) |
21 |
7 14 20
|
3jaoi |
⊢ ( ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) → ( 𝑁 ↑ 𝑁 ) < 6 ) |
22 |
1 21
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2 ) → ( 𝑁 ↑ 𝑁 ) < 6 ) |