Metamath Proof Explorer


Theorem exple2lt6

Description: A nonnegative integer to the power of itself is less than 6 if it is less than or equal to 2. (Contributed by AV, 16-Mar-2019)

Ref Expression
Assertion exple2lt6 N 0 N 2 N N < 6

Proof

Step Hyp Ref Expression
1 nn0le2is012 N 0 N 2 N = 0 N = 1 N = 2
2 id N = 0 N = 0
3 2 2 oveq12d N = 0 N N = 0 0
4 0exp0e1 0 0 = 1
5 1lt6 1 < 6
6 4 5 eqbrtri 0 0 < 6
7 3 6 eqbrtrdi N = 0 N N < 6
8 id N = 1 N = 1
9 8 8 oveq12d N = 1 N N = 1 1
10 ax-1cn 1
11 exp1 1 1 1 = 1
12 10 11 ax-mp 1 1 = 1
13 12 5 eqbrtri 1 1 < 6
14 9 13 eqbrtrdi N = 1 N N < 6
15 id N = 2 N = 2
16 15 15 oveq12d N = 2 N N = 2 2
17 sq2 2 2 = 4
18 4lt6 4 < 6
19 17 18 eqbrtri 2 2 < 6
20 16 19 eqbrtrdi N = 2 N N < 6
21 7 14 20 3jaoi N = 0 N = 1 N = 2 N N < 6
22 1 21 syl N 0 N 2 N N < 6