Metamath Proof Explorer


Theorem pgrple2abl

Description: Every symmetric group on a set with at most 2 elements is abelian. (Contributed by AV, 16-Mar-2019)

Ref Expression
Hypothesis pgrple2abl.g G = SymGrp A
Assertion pgrple2abl A V A 2 G Abel

Proof

Step Hyp Ref Expression
1 pgrple2abl.g G = SymGrp A
2 1 symggrp A V G Grp
3 2 adantr A V A 2 G Grp
4 2nn0 2 0
5 hashbnd A V 2 0 A 2 A Fin
6 4 5 mp3an2 A V A 2 A Fin
7 eqid Base G = Base G
8 1 7 symghash A Fin Base G = A !
9 6 8 syl A V A 2 Base G = A !
10 hashcl A Fin A 0
11 6 10 syl A V A 2 A 0
12 faccl A 0 A !
13 11 12 syl A V A 2 A !
14 13 nnred A V A 2 A !
15 11 11 nn0expcld A V A 2 A A 0
16 15 nn0red A V A 2 A A
17 6re 6
18 17 a1i A V A 2 6
19 facubnd A 0 A ! A A
20 11 19 syl A V A 2 A ! A A
21 exple2lt6 A 0 A 2 A A < 6
22 11 21 sylancom A V A 2 A A < 6
23 14 16 18 20 22 lelttrd A V A 2 A ! < 6
24 9 23 eqbrtrd A V A 2 Base G < 6
25 7 lt6abl G Grp Base G < 6 G Abel
26 3 24 25 syl2anc A V A 2 G Abel