Description: Every symmetric group on a set with at most 2 elements is abelian. (Contributed by AV, 16-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | pgrple2abl.g | |
|
Assertion | pgrple2abl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pgrple2abl.g | |
|
2 | 1 | symggrp | |
3 | 2 | adantr | |
4 | 2nn0 | |
|
5 | hashbnd | |
|
6 | 4 5 | mp3an2 | |
7 | eqid | |
|
8 | 1 7 | symghash | |
9 | 6 8 | syl | |
10 | hashcl | |
|
11 | 6 10 | syl | |
12 | faccl | |
|
13 | 11 12 | syl | |
14 | 13 | nnred | |
15 | 11 11 | nn0expcld | |
16 | 15 | nn0red | |
17 | 6re | |
|
18 | 17 | a1i | |
19 | facubnd | |
|
20 | 11 19 | syl | |
21 | exple2lt6 | |
|
22 | 11 21 | sylancom | |
23 | 14 16 18 20 22 | lelttrd | |
24 | 9 23 | eqbrtrd | |
25 | 7 | lt6abl | |
26 | 3 24 25 | syl2anc | |