Metamath Proof Explorer


Theorem pgrple2abl

Description: Every symmetric group on a set with at most 2 elements is abelian. (Contributed by AV, 16-Mar-2019)

Ref Expression
Hypothesis pgrple2abl.g G=SymGrpA
Assertion pgrple2abl AVA2GAbel

Proof

Step Hyp Ref Expression
1 pgrple2abl.g G=SymGrpA
2 1 symggrp AVGGrp
3 2 adantr AVA2GGrp
4 2nn0 20
5 hashbnd AV20A2AFin
6 4 5 mp3an2 AVA2AFin
7 eqid BaseG=BaseG
8 1 7 symghash AFinBaseG=A!
9 6 8 syl AVA2BaseG=A!
10 hashcl AFinA0
11 6 10 syl AVA2A0
12 faccl A0A!
13 11 12 syl AVA2A!
14 13 nnred AVA2A!
15 11 11 nn0expcld AVA2AA0
16 15 nn0red AVA2AA
17 6re 6
18 17 a1i AVA26
19 facubnd A0A!AA
20 11 19 syl AVA2A!AA
21 exple2lt6 A0A2AA<6
22 11 21 sylancom AVA2AA<6
23 14 16 18 20 22 lelttrd AVA2A!<6
24 9 23 eqbrtrd AVA2BaseG<6
25 7 lt6abl GGrpBaseG<6GAbel
26 3 24 25 syl2anc AVA2GAbel