| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pgrple2abl.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝐴 ) | 
						
							| 2 |  | eqid | ⊢ ran  ( pmTrsp ‘ 𝐴 )  =  ran  ( pmTrsp ‘ 𝐴 ) | 
						
							| 3 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 4 | 2 1 3 | symgtrf | ⊢ ran  ( pmTrsp ‘ 𝐴 )  ⊆  ( Base ‘ 𝐺 ) | 
						
							| 5 |  | hashcl | ⊢ ( 𝐴  ∈  Fin  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 6 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 7 |  | nn0ltp1le | ⊢ ( ( 2  ∈  ℕ0  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ0 )  →  ( 2  <  ( ♯ ‘ 𝐴 )  ↔  ( 2  +  1 )  ≤  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 8 | 6 7 | mpan | ⊢ ( ( ♯ ‘ 𝐴 )  ∈  ℕ0  →  ( 2  <  ( ♯ ‘ 𝐴 )  ↔  ( 2  +  1 )  ≤  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 9 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 10 | 9 | a1i | ⊢ ( ( ♯ ‘ 𝐴 )  ∈  ℕ0  →  ( 2  +  1 )  =  3 ) | 
						
							| 11 | 10 | breq1d | ⊢ ( ( ♯ ‘ 𝐴 )  ∈  ℕ0  →  ( ( 2  +  1 )  ≤  ( ♯ ‘ 𝐴 )  ↔  3  ≤  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 12 | 8 11 | bitrd | ⊢ ( ( ♯ ‘ 𝐴 )  ∈  ℕ0  →  ( 2  <  ( ♯ ‘ 𝐴 )  ↔  3  ≤  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 13 | 12 | biimpd | ⊢ ( ( ♯ ‘ 𝐴 )  ∈  ℕ0  →  ( 2  <  ( ♯ ‘ 𝐴 )  →  3  ≤  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 14 | 13 | adantld | ⊢ ( ( ♯ ‘ 𝐴 )  ∈  ℕ0  →  ( ( 𝐴  ∈  𝑉  ∧  2  <  ( ♯ ‘ 𝐴 ) )  →  3  ≤  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 15 | 5 14 | syl | ⊢ ( 𝐴  ∈  Fin  →  ( ( 𝐴  ∈  𝑉  ∧  2  <  ( ♯ ‘ 𝐴 ) )  →  3  ≤  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 16 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 17 | 16 | rexri | ⊢ 3  ∈  ℝ* | 
						
							| 18 |  | pnfge | ⊢ ( 3  ∈  ℝ*  →  3  ≤  +∞ ) | 
						
							| 19 | 17 18 | ax-mp | ⊢ 3  ≤  +∞ | 
						
							| 20 |  | hashinf | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  ( ♯ ‘ 𝐴 )  =  +∞ ) | 
						
							| 21 | 19 20 | breqtrrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  3  ≤  ( ♯ ‘ 𝐴 ) ) | 
						
							| 22 | 21 | ex | ⊢ ( 𝐴  ∈  𝑉  →  ( ¬  𝐴  ∈  Fin  →  3  ≤  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  2  <  ( ♯ ‘ 𝐴 ) )  →  ( ¬  𝐴  ∈  Fin  →  3  ≤  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 24 | 23 | com12 | ⊢ ( ¬  𝐴  ∈  Fin  →  ( ( 𝐴  ∈  𝑉  ∧  2  <  ( ♯ ‘ 𝐴 ) )  →  3  ≤  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 25 | 15 24 | pm2.61i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  2  <  ( ♯ ‘ 𝐴 ) )  →  3  ≤  ( ♯ ‘ 𝐴 ) ) | 
						
							| 26 |  | eqid | ⊢ ( pmTrsp ‘ 𝐴 )  =  ( pmTrsp ‘ 𝐴 ) | 
						
							| 27 | 26 | pmtr3ncom | ⊢ ( ( 𝐴  ∈  𝑉  ∧  3  ≤  ( ♯ ‘ 𝐴 ) )  →  ∃ 𝑦  ∈  ran  ( pmTrsp ‘ 𝐴 ) ∃ 𝑥  ∈  ran  ( pmTrsp ‘ 𝐴 ) ( 𝑥  ∘  𝑦 )  ≠  ( 𝑦  ∘  𝑥 ) ) | 
						
							| 28 |  | rexcom | ⊢ ( ∃ 𝑥  ∈  ran  ( pmTrsp ‘ 𝐴 ) ∃ 𝑦  ∈  ran  ( pmTrsp ‘ 𝐴 ) ( 𝑥  ∘  𝑦 )  ≠  ( 𝑦  ∘  𝑥 )  ↔  ∃ 𝑦  ∈  ran  ( pmTrsp ‘ 𝐴 ) ∃ 𝑥  ∈  ran  ( pmTrsp ‘ 𝐴 ) ( 𝑥  ∘  𝑦 )  ≠  ( 𝑦  ∘  𝑥 ) ) | 
						
							| 29 | 27 28 | sylibr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  3  ≤  ( ♯ ‘ 𝐴 ) )  →  ∃ 𝑥  ∈  ran  ( pmTrsp ‘ 𝐴 ) ∃ 𝑦  ∈  ran  ( pmTrsp ‘ 𝐴 ) ( 𝑥  ∘  𝑦 )  ≠  ( 𝑦  ∘  𝑥 ) ) | 
						
							| 30 | 25 29 | syldan | ⊢ ( ( 𝐴  ∈  𝑉  ∧  2  <  ( ♯ ‘ 𝐴 ) )  →  ∃ 𝑥  ∈  ran  ( pmTrsp ‘ 𝐴 ) ∃ 𝑦  ∈  ran  ( pmTrsp ‘ 𝐴 ) ( 𝑥  ∘  𝑦 )  ≠  ( 𝑦  ∘  𝑥 ) ) | 
						
							| 31 |  | ssrexv | ⊢ ( ran  ( pmTrsp ‘ 𝐴 )  ⊆  ( Base ‘ 𝐺 )  →  ( ∃ 𝑦  ∈  ran  ( pmTrsp ‘ 𝐴 ) ( 𝑥  ∘  𝑦 )  ≠  ( 𝑦  ∘  𝑥 )  →  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥  ∘  𝑦 )  ≠  ( 𝑦  ∘  𝑥 ) ) ) | 
						
							| 32 | 31 | reximdv | ⊢ ( ran  ( pmTrsp ‘ 𝐴 )  ⊆  ( Base ‘ 𝐺 )  →  ( ∃ 𝑥  ∈  ran  ( pmTrsp ‘ 𝐴 ) ∃ 𝑦  ∈  ran  ( pmTrsp ‘ 𝐴 ) ( 𝑥  ∘  𝑦 )  ≠  ( 𝑦  ∘  𝑥 )  →  ∃ 𝑥  ∈  ran  ( pmTrsp ‘ 𝐴 ) ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥  ∘  𝑦 )  ≠  ( 𝑦  ∘  𝑥 ) ) ) | 
						
							| 33 | 4 30 32 | mpsyl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  2  <  ( ♯ ‘ 𝐴 ) )  →  ∃ 𝑥  ∈  ran  ( pmTrsp ‘ 𝐴 ) ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥  ∘  𝑦 )  ≠  ( 𝑦  ∘  𝑥 ) ) | 
						
							| 34 |  | ssrexv | ⊢ ( ran  ( pmTrsp ‘ 𝐴 )  ⊆  ( Base ‘ 𝐺 )  →  ( ∃ 𝑥  ∈  ran  ( pmTrsp ‘ 𝐴 ) ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥  ∘  𝑦 )  ≠  ( 𝑦  ∘  𝑥 )  →  ∃ 𝑥  ∈  ( Base ‘ 𝐺 ) ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥  ∘  𝑦 )  ≠  ( 𝑦  ∘  𝑥 ) ) ) | 
						
							| 35 | 4 33 34 | mpsyl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  2  <  ( ♯ ‘ 𝐴 ) )  →  ∃ 𝑥  ∈  ( Base ‘ 𝐺 ) ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥  ∘  𝑦 )  ≠  ( 𝑦  ∘  𝑥 ) ) | 
						
							| 36 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 37 | 1 3 36 | symgov | ⊢ ( ( 𝑥  ∈  ( Base ‘ 𝐺 )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑥  ∘  𝑦 ) ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  2  <  ( ♯ ‘ 𝐴 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) ) )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑥  ∘  𝑦 ) ) | 
						
							| 39 |  | pm3.22 | ⊢ ( ( 𝑥  ∈  ( Base ‘ 𝐺 )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝑦  ∈  ( Base ‘ 𝐺 )  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) ) ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  2  <  ( ♯ ‘ 𝐴 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) ) )  →  ( 𝑦  ∈  ( Base ‘ 𝐺 )  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) ) ) | 
						
							| 41 | 1 3 36 | symgov | ⊢ ( ( 𝑦  ∈  ( Base ‘ 𝐺 )  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  =  ( 𝑦  ∘  𝑥 ) ) | 
						
							| 42 | 40 41 | syl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  2  <  ( ♯ ‘ 𝐴 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) ) )  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  =  ( 𝑦  ∘  𝑥 ) ) | 
						
							| 43 | 38 42 | neeq12d | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  2  <  ( ♯ ‘ 𝐴 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) ) )  →  ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ≠  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  ↔  ( 𝑥  ∘  𝑦 )  ≠  ( 𝑦  ∘  𝑥 ) ) ) | 
						
							| 44 | 43 | 2rexbidva | ⊢ ( ( 𝐴  ∈  𝑉  ∧  2  <  ( ♯ ‘ 𝐴 ) )  →  ( ∃ 𝑥  ∈  ( Base ‘ 𝐺 ) ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ≠  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  ↔  ∃ 𝑥  ∈  ( Base ‘ 𝐺 ) ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥  ∘  𝑦 )  ≠  ( 𝑦  ∘  𝑥 ) ) ) | 
						
							| 45 | 35 44 | mpbird | ⊢ ( ( 𝐴  ∈  𝑉  ∧  2  <  ( ♯ ‘ 𝐴 ) )  →  ∃ 𝑥  ∈  ( Base ‘ 𝐺 ) ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ≠  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 46 |  | rexnal | ⊢ ( ∃ 𝑥  ∈  ( Base ‘ 𝐺 ) ¬  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  ↔  ¬  ∀ 𝑥  ∈  ( Base ‘ 𝐺 ) ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 47 |  | rexnal | ⊢ ( ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ¬  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  ↔  ¬  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 48 |  | df-ne | ⊢ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ≠  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  ↔  ¬  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 49 | 48 | bicomi | ⊢ ( ¬  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  ↔  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ≠  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 50 | 49 | rexbii | ⊢ ( ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ¬  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  ↔  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ≠  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 51 | 47 50 | bitr3i | ⊢ ( ¬  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  ↔  ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ≠  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 52 | 51 | rexbii | ⊢ ( ∃ 𝑥  ∈  ( Base ‘ 𝐺 ) ¬  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  ↔  ∃ 𝑥  ∈  ( Base ‘ 𝐺 ) ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ≠  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 53 | 46 52 | bitr3i | ⊢ ( ¬  ∀ 𝑥  ∈  ( Base ‘ 𝐺 ) ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  ↔  ∃ 𝑥  ∈  ( Base ‘ 𝐺 ) ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ≠  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 54 | 45 53 | sylibr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  2  <  ( ♯ ‘ 𝐴 ) )  →  ¬  ∀ 𝑥  ∈  ( Base ‘ 𝐺 ) ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 55 | 54 | intnand | ⊢ ( ( 𝐴  ∈  𝑉  ∧  2  <  ( ♯ ‘ 𝐴 ) )  →  ¬  ( 𝐺  ∈  Mnd  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐺 ) ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 56 | 55 | intnand | ⊢ ( ( 𝐴  ∈  𝑉  ∧  2  <  ( ♯ ‘ 𝐴 ) )  →  ¬  ( 𝐺  ∈  Grp  ∧  ( 𝐺  ∈  Mnd  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐺 ) ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) | 
						
							| 57 |  | df-nel | ⊢ ( 𝐺  ∉  Abel  ↔  ¬  𝐺  ∈  Abel ) | 
						
							| 58 |  | isabl | ⊢ ( 𝐺  ∈  Abel  ↔  ( 𝐺  ∈  Grp  ∧  𝐺  ∈  CMnd ) ) | 
						
							| 59 | 3 36 | iscmn | ⊢ ( 𝐺  ∈  CMnd  ↔  ( 𝐺  ∈  Mnd  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐺 ) ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 60 | 59 | anbi2i | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐺  ∈  CMnd )  ↔  ( 𝐺  ∈  Grp  ∧  ( 𝐺  ∈  Mnd  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐺 ) ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) | 
						
							| 61 | 58 60 | bitri | ⊢ ( 𝐺  ∈  Abel  ↔  ( 𝐺  ∈  Grp  ∧  ( 𝐺  ∈  Mnd  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐺 ) ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) | 
						
							| 62 | 57 61 | xchbinx | ⊢ ( 𝐺  ∉  Abel  ↔  ¬  ( 𝐺  ∈  Grp  ∧  ( 𝐺  ∈  Mnd  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐺 ) ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) | 
						
							| 63 | 56 62 | sylibr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  2  <  ( ♯ ‘ 𝐴 ) )  →  𝐺  ∉  Abel ) |