| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgrple2abl.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
| 2 |
|
eqid |
⊢ ran ( pmTrsp ‘ 𝐴 ) = ran ( pmTrsp ‘ 𝐴 ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 4 |
2 1 3
|
symgtrf |
⊢ ran ( pmTrsp ‘ 𝐴 ) ⊆ ( Base ‘ 𝐺 ) |
| 5 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 6 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 7 |
|
nn0ltp1le |
⊢ ( ( 2 ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) → ( 2 < ( ♯ ‘ 𝐴 ) ↔ ( 2 + 1 ) ≤ ( ♯ ‘ 𝐴 ) ) ) |
| 8 |
6 7
|
mpan |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( 2 < ( ♯ ‘ 𝐴 ) ↔ ( 2 + 1 ) ≤ ( ♯ ‘ 𝐴 ) ) ) |
| 9 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
| 10 |
9
|
a1i |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( 2 + 1 ) = 3 ) |
| 11 |
10
|
breq1d |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ( 2 + 1 ) ≤ ( ♯ ‘ 𝐴 ) ↔ 3 ≤ ( ♯ ‘ 𝐴 ) ) ) |
| 12 |
8 11
|
bitrd |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( 2 < ( ♯ ‘ 𝐴 ) ↔ 3 ≤ ( ♯ ‘ 𝐴 ) ) ) |
| 13 |
12
|
biimpd |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( 2 < ( ♯ ‘ 𝐴 ) → 3 ≤ ( ♯ ‘ 𝐴 ) ) ) |
| 14 |
13
|
adantld |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ( 𝐴 ∈ 𝑉 ∧ 2 < ( ♯ ‘ 𝐴 ) ) → 3 ≤ ( ♯ ‘ 𝐴 ) ) ) |
| 15 |
5 14
|
syl |
⊢ ( 𝐴 ∈ Fin → ( ( 𝐴 ∈ 𝑉 ∧ 2 < ( ♯ ‘ 𝐴 ) ) → 3 ≤ ( ♯ ‘ 𝐴 ) ) ) |
| 16 |
|
3re |
⊢ 3 ∈ ℝ |
| 17 |
16
|
rexri |
⊢ 3 ∈ ℝ* |
| 18 |
|
pnfge |
⊢ ( 3 ∈ ℝ* → 3 ≤ +∞ ) |
| 19 |
17 18
|
ax-mp |
⊢ 3 ≤ +∞ |
| 20 |
|
hashinf |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
| 21 |
19 20
|
breqtrrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → 3 ≤ ( ♯ ‘ 𝐴 ) ) |
| 22 |
21
|
ex |
⊢ ( 𝐴 ∈ 𝑉 → ( ¬ 𝐴 ∈ Fin → 3 ≤ ( ♯ ‘ 𝐴 ) ) ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 2 < ( ♯ ‘ 𝐴 ) ) → ( ¬ 𝐴 ∈ Fin → 3 ≤ ( ♯ ‘ 𝐴 ) ) ) |
| 24 |
23
|
com12 |
⊢ ( ¬ 𝐴 ∈ Fin → ( ( 𝐴 ∈ 𝑉 ∧ 2 < ( ♯ ‘ 𝐴 ) ) → 3 ≤ ( ♯ ‘ 𝐴 ) ) ) |
| 25 |
15 24
|
pm2.61i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 2 < ( ♯ ‘ 𝐴 ) ) → 3 ≤ ( ♯ ‘ 𝐴 ) ) |
| 26 |
|
eqid |
⊢ ( pmTrsp ‘ 𝐴 ) = ( pmTrsp ‘ 𝐴 ) |
| 27 |
26
|
pmtr3ncom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 3 ≤ ( ♯ ‘ 𝐴 ) ) → ∃ 𝑦 ∈ ran ( pmTrsp ‘ 𝐴 ) ∃ 𝑥 ∈ ran ( pmTrsp ‘ 𝐴 ) ( 𝑥 ∘ 𝑦 ) ≠ ( 𝑦 ∘ 𝑥 ) ) |
| 28 |
|
rexcom |
⊢ ( ∃ 𝑥 ∈ ran ( pmTrsp ‘ 𝐴 ) ∃ 𝑦 ∈ ran ( pmTrsp ‘ 𝐴 ) ( 𝑥 ∘ 𝑦 ) ≠ ( 𝑦 ∘ 𝑥 ) ↔ ∃ 𝑦 ∈ ran ( pmTrsp ‘ 𝐴 ) ∃ 𝑥 ∈ ran ( pmTrsp ‘ 𝐴 ) ( 𝑥 ∘ 𝑦 ) ≠ ( 𝑦 ∘ 𝑥 ) ) |
| 29 |
27 28
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 3 ≤ ( ♯ ‘ 𝐴 ) ) → ∃ 𝑥 ∈ ran ( pmTrsp ‘ 𝐴 ) ∃ 𝑦 ∈ ran ( pmTrsp ‘ 𝐴 ) ( 𝑥 ∘ 𝑦 ) ≠ ( 𝑦 ∘ 𝑥 ) ) |
| 30 |
25 29
|
syldan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 2 < ( ♯ ‘ 𝐴 ) ) → ∃ 𝑥 ∈ ran ( pmTrsp ‘ 𝐴 ) ∃ 𝑦 ∈ ran ( pmTrsp ‘ 𝐴 ) ( 𝑥 ∘ 𝑦 ) ≠ ( 𝑦 ∘ 𝑥 ) ) |
| 31 |
|
ssrexv |
⊢ ( ran ( pmTrsp ‘ 𝐴 ) ⊆ ( Base ‘ 𝐺 ) → ( ∃ 𝑦 ∈ ran ( pmTrsp ‘ 𝐴 ) ( 𝑥 ∘ 𝑦 ) ≠ ( 𝑦 ∘ 𝑥 ) → ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ∘ 𝑦 ) ≠ ( 𝑦 ∘ 𝑥 ) ) ) |
| 32 |
31
|
reximdv |
⊢ ( ran ( pmTrsp ‘ 𝐴 ) ⊆ ( Base ‘ 𝐺 ) → ( ∃ 𝑥 ∈ ran ( pmTrsp ‘ 𝐴 ) ∃ 𝑦 ∈ ran ( pmTrsp ‘ 𝐴 ) ( 𝑥 ∘ 𝑦 ) ≠ ( 𝑦 ∘ 𝑥 ) → ∃ 𝑥 ∈ ran ( pmTrsp ‘ 𝐴 ) ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ∘ 𝑦 ) ≠ ( 𝑦 ∘ 𝑥 ) ) ) |
| 33 |
4 30 32
|
mpsyl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 2 < ( ♯ ‘ 𝐴 ) ) → ∃ 𝑥 ∈ ran ( pmTrsp ‘ 𝐴 ) ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ∘ 𝑦 ) ≠ ( 𝑦 ∘ 𝑥 ) ) |
| 34 |
|
ssrexv |
⊢ ( ran ( pmTrsp ‘ 𝐴 ) ⊆ ( Base ‘ 𝐺 ) → ( ∃ 𝑥 ∈ ran ( pmTrsp ‘ 𝐴 ) ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ∘ 𝑦 ) ≠ ( 𝑦 ∘ 𝑥 ) → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ∘ 𝑦 ) ≠ ( 𝑦 ∘ 𝑥 ) ) ) |
| 35 |
4 33 34
|
mpsyl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 2 < ( ♯ ‘ 𝐴 ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ∘ 𝑦 ) ≠ ( 𝑦 ∘ 𝑥 ) ) |
| 36 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 37 |
1 3 36
|
symgov |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
| 38 |
37
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 2 < ( ♯ ‘ 𝐴 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
| 39 |
|
pm3.22 |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) |
| 40 |
39
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 2 < ( ♯ ‘ 𝐴 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) |
| 41 |
1 3 36
|
symgov |
⊢ ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑦 ∘ 𝑥 ) ) |
| 42 |
40 41
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 2 < ( ♯ ‘ 𝐴 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑦 ∘ 𝑥 ) ) |
| 43 |
38 42
|
neeq12d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 2 < ( ♯ ‘ 𝐴 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ≠ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ( 𝑥 ∘ 𝑦 ) ≠ ( 𝑦 ∘ 𝑥 ) ) ) |
| 44 |
43
|
2rexbidva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 2 < ( ♯ ‘ 𝐴 ) ) → ( ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ≠ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ∘ 𝑦 ) ≠ ( 𝑦 ∘ 𝑥 ) ) ) |
| 45 |
35 44
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 2 < ( ♯ ‘ 𝐴 ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ≠ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 46 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ¬ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 47 |
|
rexnal |
⊢ ( ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ¬ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ¬ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 48 |
|
df-ne |
⊢ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ≠ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ¬ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 49 |
48
|
bicomi |
⊢ ( ¬ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ≠ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 50 |
49
|
rexbii |
⊢ ( ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ¬ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ≠ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 51 |
47 50
|
bitr3i |
⊢ ( ¬ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ≠ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 52 |
51
|
rexbii |
⊢ ( ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ¬ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ≠ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 53 |
46 52
|
bitr3i |
⊢ ( ¬ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ≠ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 54 |
45 53
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 2 < ( ♯ ‘ 𝐴 ) ) → ¬ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 55 |
54
|
intnand |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 2 < ( ♯ ‘ 𝐴 ) ) → ¬ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 56 |
55
|
intnand |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 2 < ( ♯ ‘ 𝐴 ) ) → ¬ ( 𝐺 ∈ Grp ∧ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 57 |
|
df-nel |
⊢ ( 𝐺 ∉ Abel ↔ ¬ 𝐺 ∈ Abel ) |
| 58 |
|
isabl |
⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) ) |
| 59 |
3 36
|
iscmn |
⊢ ( 𝐺 ∈ CMnd ↔ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 60 |
59
|
anbi2i |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 61 |
58 60
|
bitri |
⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 62 |
57 61
|
xchbinx |
⊢ ( 𝐺 ∉ Abel ↔ ¬ ( 𝐺 ∈ Grp ∧ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 63 |
56 62
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 2 < ( ♯ ‘ 𝐴 ) ) → 𝐺 ∉ Abel ) |