| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtr3ncom.t | ⊢ 𝑇  =  ( pmTrsp ‘ 𝐷 ) | 
						
							| 2 |  | hashge3el3dif | ⊢ ( ( 𝐷  ∈  𝑉  ∧  3  ≤  ( ♯ ‘ 𝐷 ) )  →  ∃ 𝑥  ∈  𝐷 ∃ 𝑦  ∈  𝐷 ∃ 𝑧  ∈  𝐷 ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 ) ) | 
						
							| 3 |  | simprl | ⊢ ( ( ( ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 ) )  ∧  ( 𝐷  ∈  𝑉  ∧  3  ≤  ( ♯ ‘ 𝐷 ) ) )  →  𝐷  ∈  𝑉 ) | 
						
							| 4 |  | prssi | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  →  { 𝑥 ,  𝑦 }  ⊆  𝐷 ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  𝐷 )  →  { 𝑥 ,  𝑦 }  ⊆  𝐷 ) | 
						
							| 6 | 5 | ad2antrr | ⊢ ( ( ( ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 ) )  ∧  ( 𝐷  ∈  𝑉  ∧  3  ≤  ( ♯ ‘ 𝐷 ) ) )  →  { 𝑥 ,  𝑦 }  ⊆  𝐷 ) | 
						
							| 7 |  | simplll | ⊢ ( ( ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 ) )  →  𝑥  ∈  𝐷 ) | 
						
							| 8 |  | simplr | ⊢ ( ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  𝐷 )  →  𝑦  ∈  𝐷 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 ) )  →  𝑦  ∈  𝐷 ) | 
						
							| 10 |  | simpr1 | ⊢ ( ( ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 ) )  →  𝑥  ≠  𝑦 ) | 
						
							| 11 |  | enpr2 | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷  ∧  𝑥  ≠  𝑦 )  →  { 𝑥 ,  𝑦 }  ≈  2o ) | 
						
							| 12 | 7 9 10 11 | syl3anc | ⊢ ( ( ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 ) )  →  { 𝑥 ,  𝑦 }  ≈  2o ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 ) )  ∧  ( 𝐷  ∈  𝑉  ∧  3  ≤  ( ♯ ‘ 𝐷 ) ) )  →  { 𝑥 ,  𝑦 }  ≈  2o ) | 
						
							| 14 |  | eqid | ⊢ ran  𝑇  =  ran  𝑇 | 
						
							| 15 | 1 14 | pmtrrn | ⊢ ( ( 𝐷  ∈  𝑉  ∧  { 𝑥 ,  𝑦 }  ⊆  𝐷  ∧  { 𝑥 ,  𝑦 }  ≈  2o )  →  ( 𝑇 ‘ { 𝑥 ,  𝑦 } )  ∈  ran  𝑇 ) | 
						
							| 16 | 3 6 13 15 | syl3anc | ⊢ ( ( ( ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 ) )  ∧  ( 𝐷  ∈  𝑉  ∧  3  ≤  ( ♯ ‘ 𝐷 ) ) )  →  ( 𝑇 ‘ { 𝑥 ,  𝑦 } )  ∈  ran  𝑇 ) | 
						
							| 17 |  | prssi | ⊢ ( ( 𝑦  ∈  𝐷  ∧  𝑧  ∈  𝐷 )  →  { 𝑦 ,  𝑧 }  ⊆  𝐷 ) | 
						
							| 18 | 17 | ad5ant23 | ⊢ ( ( ( ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 ) )  ∧  ( 𝐷  ∈  𝑉  ∧  3  ≤  ( ♯ ‘ 𝐷 ) ) )  →  { 𝑦 ,  𝑧 }  ⊆  𝐷 ) | 
						
							| 19 |  | simplr | ⊢ ( ( ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 ) )  →  𝑧  ∈  𝐷 ) | 
						
							| 20 |  | simpr3 | ⊢ ( ( ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 ) )  →  𝑦  ≠  𝑧 ) | 
						
							| 21 |  | enpr2 | ⊢ ( ( 𝑦  ∈  𝐷  ∧  𝑧  ∈  𝐷  ∧  𝑦  ≠  𝑧 )  →  { 𝑦 ,  𝑧 }  ≈  2o ) | 
						
							| 22 | 9 19 20 21 | syl3anc | ⊢ ( ( ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 ) )  →  { 𝑦 ,  𝑧 }  ≈  2o ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 ) )  ∧  ( 𝐷  ∈  𝑉  ∧  3  ≤  ( ♯ ‘ 𝐷 ) ) )  →  { 𝑦 ,  𝑧 }  ≈  2o ) | 
						
							| 24 | 1 14 | pmtrrn | ⊢ ( ( 𝐷  ∈  𝑉  ∧  { 𝑦 ,  𝑧 }  ⊆  𝐷  ∧  { 𝑦 ,  𝑧 }  ≈  2o )  →  ( 𝑇 ‘ { 𝑦 ,  𝑧 } )  ∈  ran  𝑇 ) | 
						
							| 25 | 3 18 23 24 | syl3anc | ⊢ ( ( ( ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 ) )  ∧  ( 𝐷  ∈  𝑉  ∧  3  ≤  ( ♯ ‘ 𝐷 ) ) )  →  ( 𝑇 ‘ { 𝑦 ,  𝑧 } )  ∈  ran  𝑇 ) | 
						
							| 26 |  | df-3an | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷  ∧  𝑧  ∈  𝐷 )  ↔  ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  𝐷 ) ) | 
						
							| 27 | 26 | biimpri | ⊢ ( ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  𝐷 )  →  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷  ∧  𝑧  ∈  𝐷 ) ) | 
						
							| 28 | 27 | ad2antrr | ⊢ ( ( ( ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 ) )  ∧  ( 𝐷  ∈  𝑉  ∧  3  ≤  ( ♯ ‘ 𝐷 ) ) )  →  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷  ∧  𝑧  ∈  𝐷 ) ) | 
						
							| 29 |  | simplr | ⊢ ( ( ( ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 ) )  ∧  ( 𝐷  ∈  𝑉  ∧  3  ≤  ( ♯ ‘ 𝐷 ) ) )  →  ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 ) ) | 
						
							| 30 |  | eqid | ⊢ ( 𝑇 ‘ { 𝑥 ,  𝑦 } )  =  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) | 
						
							| 31 |  | eqid | ⊢ ( 𝑇 ‘ { 𝑦 ,  𝑧 } )  =  ( 𝑇 ‘ { 𝑦 ,  𝑧 } ) | 
						
							| 32 | 1 30 31 | pmtr3ncomlem2 | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷  ∧  𝑧  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 ) )  →  ( ( 𝑇 ‘ { 𝑦 ,  𝑧 } )  ∘  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) )  ≠  ( ( 𝑇 ‘ { 𝑥 ,  𝑦 } )  ∘  ( 𝑇 ‘ { 𝑦 ,  𝑧 } ) ) ) | 
						
							| 33 | 3 28 29 32 | syl3anc | ⊢ ( ( ( ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 ) )  ∧  ( 𝐷  ∈  𝑉  ∧  3  ≤  ( ♯ ‘ 𝐷 ) ) )  →  ( ( 𝑇 ‘ { 𝑦 ,  𝑧 } )  ∘  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) )  ≠  ( ( 𝑇 ‘ { 𝑥 ,  𝑦 } )  ∘  ( 𝑇 ‘ { 𝑦 ,  𝑧 } ) ) ) | 
						
							| 34 |  | coeq2 | ⊢ ( 𝑓  =  ( 𝑇 ‘ { 𝑥 ,  𝑦 } )  →  ( 𝑔  ∘  𝑓 )  =  ( 𝑔  ∘  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) ) ) | 
						
							| 35 |  | coeq1 | ⊢ ( 𝑓  =  ( 𝑇 ‘ { 𝑥 ,  𝑦 } )  →  ( 𝑓  ∘  𝑔 )  =  ( ( 𝑇 ‘ { 𝑥 ,  𝑦 } )  ∘  𝑔 ) ) | 
						
							| 36 | 34 35 | neeq12d | ⊢ ( 𝑓  =  ( 𝑇 ‘ { 𝑥 ,  𝑦 } )  →  ( ( 𝑔  ∘  𝑓 )  ≠  ( 𝑓  ∘  𝑔 )  ↔  ( 𝑔  ∘  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) )  ≠  ( ( 𝑇 ‘ { 𝑥 ,  𝑦 } )  ∘  𝑔 ) ) ) | 
						
							| 37 |  | coeq1 | ⊢ ( 𝑔  =  ( 𝑇 ‘ { 𝑦 ,  𝑧 } )  →  ( 𝑔  ∘  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) )  =  ( ( 𝑇 ‘ { 𝑦 ,  𝑧 } )  ∘  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) ) ) | 
						
							| 38 |  | coeq2 | ⊢ ( 𝑔  =  ( 𝑇 ‘ { 𝑦 ,  𝑧 } )  →  ( ( 𝑇 ‘ { 𝑥 ,  𝑦 } )  ∘  𝑔 )  =  ( ( 𝑇 ‘ { 𝑥 ,  𝑦 } )  ∘  ( 𝑇 ‘ { 𝑦 ,  𝑧 } ) ) ) | 
						
							| 39 | 37 38 | neeq12d | ⊢ ( 𝑔  =  ( 𝑇 ‘ { 𝑦 ,  𝑧 } )  →  ( ( 𝑔  ∘  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) )  ≠  ( ( 𝑇 ‘ { 𝑥 ,  𝑦 } )  ∘  𝑔 )  ↔  ( ( 𝑇 ‘ { 𝑦 ,  𝑧 } )  ∘  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) )  ≠  ( ( 𝑇 ‘ { 𝑥 ,  𝑦 } )  ∘  ( 𝑇 ‘ { 𝑦 ,  𝑧 } ) ) ) ) | 
						
							| 40 | 36 39 | rspc2ev | ⊢ ( ( ( 𝑇 ‘ { 𝑥 ,  𝑦 } )  ∈  ran  𝑇  ∧  ( 𝑇 ‘ { 𝑦 ,  𝑧 } )  ∈  ran  𝑇  ∧  ( ( 𝑇 ‘ { 𝑦 ,  𝑧 } )  ∘  ( 𝑇 ‘ { 𝑥 ,  𝑦 } ) )  ≠  ( ( 𝑇 ‘ { 𝑥 ,  𝑦 } )  ∘  ( 𝑇 ‘ { 𝑦 ,  𝑧 } ) ) )  →  ∃ 𝑓  ∈  ran  𝑇 ∃ 𝑔  ∈  ran  𝑇 ( 𝑔  ∘  𝑓 )  ≠  ( 𝑓  ∘  𝑔 ) ) | 
						
							| 41 | 16 25 33 40 | syl3anc | ⊢ ( ( ( ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  𝐷 )  ∧  ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 ) )  ∧  ( 𝐷  ∈  𝑉  ∧  3  ≤  ( ♯ ‘ 𝐷 ) ) )  →  ∃ 𝑓  ∈  ran  𝑇 ∃ 𝑔  ∈  ran  𝑇 ( 𝑔  ∘  𝑓 )  ≠  ( 𝑓  ∘  𝑔 ) ) | 
						
							| 42 | 41 | exp31 | ⊢ ( ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  𝐷 )  →  ( ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 )  →  ( ( 𝐷  ∈  𝑉  ∧  3  ≤  ( ♯ ‘ 𝐷 ) )  →  ∃ 𝑓  ∈  ran  𝑇 ∃ 𝑔  ∈  ran  𝑇 ( 𝑔  ∘  𝑓 )  ≠  ( 𝑓  ∘  𝑔 ) ) ) ) | 
						
							| 43 | 42 | rexlimdva | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  →  ( ∃ 𝑧  ∈  𝐷 ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 )  →  ( ( 𝐷  ∈  𝑉  ∧  3  ≤  ( ♯ ‘ 𝐷 ) )  →  ∃ 𝑓  ∈  ran  𝑇 ∃ 𝑔  ∈  ran  𝑇 ( 𝑔  ∘  𝑓 )  ≠  ( 𝑓  ∘  𝑔 ) ) ) ) | 
						
							| 44 | 43 | rexlimivv | ⊢ ( ∃ 𝑥  ∈  𝐷 ∃ 𝑦  ∈  𝐷 ∃ 𝑧  ∈  𝐷 ( 𝑥  ≠  𝑦  ∧  𝑥  ≠  𝑧  ∧  𝑦  ≠  𝑧 )  →  ( ( 𝐷  ∈  𝑉  ∧  3  ≤  ( ♯ ‘ 𝐷 ) )  →  ∃ 𝑓  ∈  ran  𝑇 ∃ 𝑔  ∈  ran  𝑇 ( 𝑔  ∘  𝑓 )  ≠  ( 𝑓  ∘  𝑔 ) ) ) | 
						
							| 45 | 2 44 | mpcom | ⊢ ( ( 𝐷  ∈  𝑉  ∧  3  ≤  ( ♯ ‘ 𝐷 ) )  →  ∃ 𝑓  ∈  ran  𝑇 ∃ 𝑔  ∈  ran  𝑇 ( 𝑔  ∘  𝑓 )  ≠  ( 𝑓  ∘  𝑔 ) ) |