Metamath Proof Explorer


Theorem f1cof1blem

Description: Lemma for f1cof1b and focofob . (Contributed by AV, 18-Sep-2024)

Ref Expression
Hypotheses fcores.f
|- ( ph -> F : A --> B )
fcores.e
|- E = ( ran F i^i C )
fcores.p
|- P = ( `' F " C )
fcores.x
|- X = ( F |` P )
fcores.g
|- ( ph -> G : C --> D )
fcores.y
|- Y = ( G |` E )
f1cof1blem.s
|- ( ph -> ran F = C )
Assertion f1cof1blem
|- ( ph -> ( ( P = A /\ E = C ) /\ ( X = F /\ Y = G ) ) )

Proof

Step Hyp Ref Expression
1 fcores.f
 |-  ( ph -> F : A --> B )
2 fcores.e
 |-  E = ( ran F i^i C )
3 fcores.p
 |-  P = ( `' F " C )
4 fcores.x
 |-  X = ( F |` P )
5 fcores.g
 |-  ( ph -> G : C --> D )
6 fcores.y
 |-  Y = ( G |` E )
7 f1cof1blem.s
 |-  ( ph -> ran F = C )
8 7 eqcomd
 |-  ( ph -> C = ran F )
9 8 imaeq2d
 |-  ( ph -> ( `' F " C ) = ( `' F " ran F ) )
10 3 9 syl5eq
 |-  ( ph -> P = ( `' F " ran F ) )
11 cnvimarndm
 |-  ( `' F " ran F ) = dom F
12 1 fdmd
 |-  ( ph -> dom F = A )
13 11 12 syl5eq
 |-  ( ph -> ( `' F " ran F ) = A )
14 10 13 eqtrd
 |-  ( ph -> P = A )
15 simpr
 |-  ( ( ph /\ ran F = C ) -> ran F = C )
16 15 ineq1d
 |-  ( ( ph /\ ran F = C ) -> ( ran F i^i C ) = ( C i^i C ) )
17 inidm
 |-  ( C i^i C ) = C
18 16 17 eqtrdi
 |-  ( ( ph /\ ran F = C ) -> ( ran F i^i C ) = C )
19 7 18 mpdan
 |-  ( ph -> ( ran F i^i C ) = C )
20 2 19 syl5eq
 |-  ( ph -> E = C )
21 14 20 jca
 |-  ( ph -> ( P = A /\ E = C ) )
22 10 11 eqtrdi
 |-  ( ph -> P = dom F )
23 22 reseq2d
 |-  ( ph -> ( F |` P ) = ( F |` dom F ) )
24 4 23 syl5eq
 |-  ( ph -> X = ( F |` dom F ) )
25 1 freld
 |-  ( ph -> Rel F )
26 resdm
 |-  ( Rel F -> ( F |` dom F ) = F )
27 25 26 syl
 |-  ( ph -> ( F |` dom F ) = F )
28 24 27 eqtrd
 |-  ( ph -> X = F )
29 5 fdmd
 |-  ( ph -> dom G = C )
30 20 29 eqtr4d
 |-  ( ph -> E = dom G )
31 30 reseq2d
 |-  ( ph -> ( G |` E ) = ( G |` dom G ) )
32 6 31 syl5eq
 |-  ( ph -> Y = ( G |` dom G ) )
33 5 freld
 |-  ( ph -> Rel G )
34 resdm
 |-  ( Rel G -> ( G |` dom G ) = G )
35 33 34 syl
 |-  ( ph -> ( G |` dom G ) = G )
36 32 35 eqtrd
 |-  ( ph -> Y = G )
37 21 28 36 jca32
 |-  ( ph -> ( ( P = A /\ E = C ) /\ ( X = F /\ Y = G ) ) )