Metamath Proof Explorer


Theorem f1cof1blem

Description: Lemma for f1cof1b and focofob . (Contributed by AV, 18-Sep-2024)

Ref Expression
Hypotheses fcores.f ( 𝜑𝐹 : 𝐴𝐵 )
fcores.e 𝐸 = ( ran 𝐹𝐶 )
fcores.p 𝑃 = ( 𝐹𝐶 )
fcores.x 𝑋 = ( 𝐹𝑃 )
fcores.g ( 𝜑𝐺 : 𝐶𝐷 )
fcores.y 𝑌 = ( 𝐺𝐸 )
f1cof1blem.s ( 𝜑 → ran 𝐹 = 𝐶 )
Assertion f1cof1blem ( 𝜑 → ( ( 𝑃 = 𝐴𝐸 = 𝐶 ) ∧ ( 𝑋 = 𝐹𝑌 = 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 fcores.f ( 𝜑𝐹 : 𝐴𝐵 )
2 fcores.e 𝐸 = ( ran 𝐹𝐶 )
3 fcores.p 𝑃 = ( 𝐹𝐶 )
4 fcores.x 𝑋 = ( 𝐹𝑃 )
5 fcores.g ( 𝜑𝐺 : 𝐶𝐷 )
6 fcores.y 𝑌 = ( 𝐺𝐸 )
7 f1cof1blem.s ( 𝜑 → ran 𝐹 = 𝐶 )
8 7 eqcomd ( 𝜑𝐶 = ran 𝐹 )
9 8 imaeq2d ( 𝜑 → ( 𝐹𝐶 ) = ( 𝐹 “ ran 𝐹 ) )
10 3 9 syl5eq ( 𝜑𝑃 = ( 𝐹 “ ran 𝐹 ) )
11 cnvimarndm ( 𝐹 “ ran 𝐹 ) = dom 𝐹
12 1 fdmd ( 𝜑 → dom 𝐹 = 𝐴 )
13 11 12 syl5eq ( 𝜑 → ( 𝐹 “ ran 𝐹 ) = 𝐴 )
14 10 13 eqtrd ( 𝜑𝑃 = 𝐴 )
15 simpr ( ( 𝜑 ∧ ran 𝐹 = 𝐶 ) → ran 𝐹 = 𝐶 )
16 15 ineq1d ( ( 𝜑 ∧ ran 𝐹 = 𝐶 ) → ( ran 𝐹𝐶 ) = ( 𝐶𝐶 ) )
17 inidm ( 𝐶𝐶 ) = 𝐶
18 16 17 eqtrdi ( ( 𝜑 ∧ ran 𝐹 = 𝐶 ) → ( ran 𝐹𝐶 ) = 𝐶 )
19 7 18 mpdan ( 𝜑 → ( ran 𝐹𝐶 ) = 𝐶 )
20 2 19 syl5eq ( 𝜑𝐸 = 𝐶 )
21 14 20 jca ( 𝜑 → ( 𝑃 = 𝐴𝐸 = 𝐶 ) )
22 10 11 eqtrdi ( 𝜑𝑃 = dom 𝐹 )
23 22 reseq2d ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐹 ↾ dom 𝐹 ) )
24 4 23 syl5eq ( 𝜑𝑋 = ( 𝐹 ↾ dom 𝐹 ) )
25 1 freld ( 𝜑 → Rel 𝐹 )
26 resdm ( Rel 𝐹 → ( 𝐹 ↾ dom 𝐹 ) = 𝐹 )
27 25 26 syl ( 𝜑 → ( 𝐹 ↾ dom 𝐹 ) = 𝐹 )
28 24 27 eqtrd ( 𝜑𝑋 = 𝐹 )
29 5 fdmd ( 𝜑 → dom 𝐺 = 𝐶 )
30 20 29 eqtr4d ( 𝜑𝐸 = dom 𝐺 )
31 30 reseq2d ( 𝜑 → ( 𝐺𝐸 ) = ( 𝐺 ↾ dom 𝐺 ) )
32 6 31 syl5eq ( 𝜑𝑌 = ( 𝐺 ↾ dom 𝐺 ) )
33 5 freld ( 𝜑 → Rel 𝐺 )
34 resdm ( Rel 𝐺 → ( 𝐺 ↾ dom 𝐺 ) = 𝐺 )
35 33 34 syl ( 𝜑 → ( 𝐺 ↾ dom 𝐺 ) = 𝐺 )
36 32 35 eqtrd ( 𝜑𝑌 = 𝐺 )
37 21 28 36 jca32 ( 𝜑 → ( ( 𝑃 = 𝐴𝐸 = 𝐶 ) ∧ ( 𝑋 = 𝐹𝑌 = 𝐺 ) ) )