Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> F : A --> B ) |
2 |
|
eqid |
|- ( ran F i^i C ) = ( ran F i^i C ) |
3 |
|
eqid |
|- ( `' F " C ) = ( `' F " C ) |
4 |
|
eqid |
|- ( F |` ( `' F " C ) ) = ( F |` ( `' F " C ) ) |
5 |
|
simp2 |
|- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> G : C --> D ) |
6 |
|
eqid |
|- ( G |` ( ran F i^i C ) ) = ( G |` ( ran F i^i C ) ) |
7 |
|
simp3 |
|- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ran F = C ) |
8 |
1 2 3 4 5 6 7
|
f1cof1blem |
|- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( ( ( `' F " C ) = A /\ ( ran F i^i C ) = C ) /\ ( ( F |` ( `' F " C ) ) = F /\ ( G |` ( ran F i^i C ) ) = G ) ) ) |
9 |
|
simpll |
|- ( ( ( ( `' F " C ) = A /\ ( ran F i^i C ) = C ) /\ ( ( F |` ( `' F " C ) ) = F /\ ( G |` ( ran F i^i C ) ) = G ) ) -> ( `' F " C ) = A ) |
10 |
|
f1eq2 |
|- ( ( `' F " C ) = A -> ( ( G o. F ) : ( `' F " C ) -1-1-> D <-> ( G o. F ) : A -1-1-> D ) ) |
11 |
8 9 10
|
3syl |
|- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( ( G o. F ) : ( `' F " C ) -1-1-> D <-> ( G o. F ) : A -1-1-> D ) ) |
12 |
11
|
bicomd |
|- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( ( G o. F ) : A -1-1-> D <-> ( G o. F ) : ( `' F " C ) -1-1-> D ) ) |
13 |
|
ancom |
|- ( ( ( G |` ( ran F i^i C ) ) = G /\ ( F |` ( `' F " C ) ) = F ) <-> ( ( F |` ( `' F " C ) ) = F /\ ( G |` ( ran F i^i C ) ) = G ) ) |
14 |
13
|
anbi2i |
|- ( ( ( ( `' F " C ) = A /\ ( ran F i^i C ) = C ) /\ ( ( G |` ( ran F i^i C ) ) = G /\ ( F |` ( `' F " C ) ) = F ) ) <-> ( ( ( `' F " C ) = A /\ ( ran F i^i C ) = C ) /\ ( ( F |` ( `' F " C ) ) = F /\ ( G |` ( ran F i^i C ) ) = G ) ) ) |
15 |
8 14
|
sylibr |
|- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( ( ( `' F " C ) = A /\ ( ran F i^i C ) = C ) /\ ( ( G |` ( ran F i^i C ) ) = G /\ ( F |` ( `' F " C ) ) = F ) ) ) |
16 |
15
|
adantr |
|- ( ( ( F : A --> B /\ G : C --> D /\ ran F = C ) /\ ( G o. F ) : ( `' F " C ) -1-1-> D ) -> ( ( ( `' F " C ) = A /\ ( ran F i^i C ) = C ) /\ ( ( G |` ( ran F i^i C ) ) = G /\ ( F |` ( `' F " C ) ) = F ) ) ) |
17 |
1
|
adantr |
|- ( ( ( F : A --> B /\ G : C --> D /\ ran F = C ) /\ ( G o. F ) : ( `' F " C ) -1-1-> D ) -> F : A --> B ) |
18 |
5
|
adantr |
|- ( ( ( F : A --> B /\ G : C --> D /\ ran F = C ) /\ ( G o. F ) : ( `' F " C ) -1-1-> D ) -> G : C --> D ) |
19 |
|
simpr |
|- ( ( ( F : A --> B /\ G : C --> D /\ ran F = C ) /\ ( G o. F ) : ( `' F " C ) -1-1-> D ) -> ( G o. F ) : ( `' F " C ) -1-1-> D ) |
20 |
17 2 3 4 18 6 19
|
fcoresf1 |
|- ( ( ( F : A --> B /\ G : C --> D /\ ran F = C ) /\ ( G o. F ) : ( `' F " C ) -1-1-> D ) -> ( ( F |` ( `' F " C ) ) : ( `' F " C ) -1-1-> ( ran F i^i C ) /\ ( G |` ( ran F i^i C ) ) : ( ran F i^i C ) -1-1-> D ) ) |
21 |
20
|
ancomd |
|- ( ( ( F : A --> B /\ G : C --> D /\ ran F = C ) /\ ( G o. F ) : ( `' F " C ) -1-1-> D ) -> ( ( G |` ( ran F i^i C ) ) : ( ran F i^i C ) -1-1-> D /\ ( F |` ( `' F " C ) ) : ( `' F " C ) -1-1-> ( ran F i^i C ) ) ) |
22 |
|
simprl |
|- ( ( ( ( `' F " C ) = A /\ ( ran F i^i C ) = C ) /\ ( ( G |` ( ran F i^i C ) ) = G /\ ( F |` ( `' F " C ) ) = F ) ) -> ( G |` ( ran F i^i C ) ) = G ) |
23 |
|
simpr |
|- ( ( ( `' F " C ) = A /\ ( ran F i^i C ) = C ) -> ( ran F i^i C ) = C ) |
24 |
23
|
adantr |
|- ( ( ( ( `' F " C ) = A /\ ( ran F i^i C ) = C ) /\ ( ( G |` ( ran F i^i C ) ) = G /\ ( F |` ( `' F " C ) ) = F ) ) -> ( ran F i^i C ) = C ) |
25 |
|
eqidd |
|- ( ( ( ( `' F " C ) = A /\ ( ran F i^i C ) = C ) /\ ( ( G |` ( ran F i^i C ) ) = G /\ ( F |` ( `' F " C ) ) = F ) ) -> D = D ) |
26 |
22 24 25
|
f1eq123d |
|- ( ( ( ( `' F " C ) = A /\ ( ran F i^i C ) = C ) /\ ( ( G |` ( ran F i^i C ) ) = G /\ ( F |` ( `' F " C ) ) = F ) ) -> ( ( G |` ( ran F i^i C ) ) : ( ran F i^i C ) -1-1-> D <-> G : C -1-1-> D ) ) |
27 |
26
|
biimpd |
|- ( ( ( ( `' F " C ) = A /\ ( ran F i^i C ) = C ) /\ ( ( G |` ( ran F i^i C ) ) = G /\ ( F |` ( `' F " C ) ) = F ) ) -> ( ( G |` ( ran F i^i C ) ) : ( ran F i^i C ) -1-1-> D -> G : C -1-1-> D ) ) |
28 |
|
simprr |
|- ( ( ( ( `' F " C ) = A /\ ( ran F i^i C ) = C ) /\ ( ( G |` ( ran F i^i C ) ) = G /\ ( F |` ( `' F " C ) ) = F ) ) -> ( F |` ( `' F " C ) ) = F ) |
29 |
|
simpll |
|- ( ( ( ( `' F " C ) = A /\ ( ran F i^i C ) = C ) /\ ( ( G |` ( ran F i^i C ) ) = G /\ ( F |` ( `' F " C ) ) = F ) ) -> ( `' F " C ) = A ) |
30 |
28 29 24
|
f1eq123d |
|- ( ( ( ( `' F " C ) = A /\ ( ran F i^i C ) = C ) /\ ( ( G |` ( ran F i^i C ) ) = G /\ ( F |` ( `' F " C ) ) = F ) ) -> ( ( F |` ( `' F " C ) ) : ( `' F " C ) -1-1-> ( ran F i^i C ) <-> F : A -1-1-> C ) ) |
31 |
30
|
biimpd |
|- ( ( ( ( `' F " C ) = A /\ ( ran F i^i C ) = C ) /\ ( ( G |` ( ran F i^i C ) ) = G /\ ( F |` ( `' F " C ) ) = F ) ) -> ( ( F |` ( `' F " C ) ) : ( `' F " C ) -1-1-> ( ran F i^i C ) -> F : A -1-1-> C ) ) |
32 |
27 31
|
anim12d |
|- ( ( ( ( `' F " C ) = A /\ ( ran F i^i C ) = C ) /\ ( ( G |` ( ran F i^i C ) ) = G /\ ( F |` ( `' F " C ) ) = F ) ) -> ( ( ( G |` ( ran F i^i C ) ) : ( ran F i^i C ) -1-1-> D /\ ( F |` ( `' F " C ) ) : ( `' F " C ) -1-1-> ( ran F i^i C ) ) -> ( G : C -1-1-> D /\ F : A -1-1-> C ) ) ) |
33 |
16 21 32
|
sylc |
|- ( ( ( F : A --> B /\ G : C --> D /\ ran F = C ) /\ ( G o. F ) : ( `' F " C ) -1-1-> D ) -> ( G : C -1-1-> D /\ F : A -1-1-> C ) ) |
34 |
12 33
|
sylbida |
|- ( ( ( F : A --> B /\ G : C --> D /\ ran F = C ) /\ ( G o. F ) : A -1-1-> D ) -> ( G : C -1-1-> D /\ F : A -1-1-> C ) ) |
35 |
|
ffrn |
|- ( F : A --> B -> F : A --> ran F ) |
36 |
|
ax-1 |
|- ( F : A --> B -> ( F : A --> ran F -> F : A --> B ) ) |
37 |
35 36
|
impbid2 |
|- ( F : A --> B -> ( F : A --> B <-> F : A --> ran F ) ) |
38 |
37
|
anbi1d |
|- ( F : A --> B -> ( ( F : A --> B /\ Fun `' F ) <-> ( F : A --> ran F /\ Fun `' F ) ) ) |
39 |
|
df-f1 |
|- ( F : A -1-1-> B <-> ( F : A --> B /\ Fun `' F ) ) |
40 |
|
df-f1 |
|- ( F : A -1-1-> ran F <-> ( F : A --> ran F /\ Fun `' F ) ) |
41 |
38 39 40
|
3bitr4g |
|- ( F : A --> B -> ( F : A -1-1-> B <-> F : A -1-1-> ran F ) ) |
42 |
41
|
3ad2ant1 |
|- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( F : A -1-1-> B <-> F : A -1-1-> ran F ) ) |
43 |
|
f1eq3 |
|- ( ran F = C -> ( F : A -1-1-> ran F <-> F : A -1-1-> C ) ) |
44 |
43
|
3ad2ant3 |
|- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( F : A -1-1-> ran F <-> F : A -1-1-> C ) ) |
45 |
42 44
|
bitrd |
|- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( F : A -1-1-> B <-> F : A -1-1-> C ) ) |
46 |
45
|
anbi2d |
|- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( ( G : C -1-1-> D /\ F : A -1-1-> B ) <-> ( G : C -1-1-> D /\ F : A -1-1-> C ) ) ) |
47 |
46
|
adantr |
|- ( ( ( F : A --> B /\ G : C --> D /\ ran F = C ) /\ ( G o. F ) : A -1-1-> D ) -> ( ( G : C -1-1-> D /\ F : A -1-1-> B ) <-> ( G : C -1-1-> D /\ F : A -1-1-> C ) ) ) |
48 |
34 47
|
mpbird |
|- ( ( ( F : A --> B /\ G : C --> D /\ ran F = C ) /\ ( G o. F ) : A -1-1-> D ) -> ( G : C -1-1-> D /\ F : A -1-1-> B ) ) |
49 |
48
|
ancomd |
|- ( ( ( F : A --> B /\ G : C --> D /\ ran F = C ) /\ ( G o. F ) : A -1-1-> D ) -> ( F : A -1-1-> B /\ G : C -1-1-> D ) ) |
50 |
49
|
ex |
|- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( ( G o. F ) : A -1-1-> D -> ( F : A -1-1-> B /\ G : C -1-1-> D ) ) ) |
51 |
|
f1cof1 |
|- ( ( G : C -1-1-> D /\ F : A -1-1-> B ) -> ( G o. F ) : ( `' F " C ) -1-1-> D ) |
52 |
51
|
ancoms |
|- ( ( F : A -1-1-> B /\ G : C -1-1-> D ) -> ( G o. F ) : ( `' F " C ) -1-1-> D ) |
53 |
|
imaeq2 |
|- ( C = ran F -> ( `' F " C ) = ( `' F " ran F ) ) |
54 |
|
cnvimarndm |
|- ( `' F " ran F ) = dom F |
55 |
53 54
|
eqtrdi |
|- ( C = ran F -> ( `' F " C ) = dom F ) |
56 |
55
|
eqcoms |
|- ( ran F = C -> ( `' F " C ) = dom F ) |
57 |
56
|
3ad2ant3 |
|- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( `' F " C ) = dom F ) |
58 |
1
|
fdmd |
|- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> dom F = A ) |
59 |
57 58
|
eqtrd |
|- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( `' F " C ) = A ) |
60 |
59 10
|
syl |
|- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( ( G o. F ) : ( `' F " C ) -1-1-> D <-> ( G o. F ) : A -1-1-> D ) ) |
61 |
52 60
|
syl5ib |
|- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( ( F : A -1-1-> B /\ G : C -1-1-> D ) -> ( G o. F ) : A -1-1-> D ) ) |
62 |
50 61
|
impbid |
|- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( ( G o. F ) : A -1-1-> D <-> ( F : A -1-1-> B /\ G : C -1-1-> D ) ) ) |