Step |
Hyp |
Ref |
Expression |
1 |
|
f1dom3fv3dif.v |
|- ( ph -> ( A e. X /\ B e. Y /\ C e. Z ) ) |
2 |
|
f1dom3fv3dif.n |
|- ( ph -> ( A =/= B /\ A =/= C /\ B =/= C ) ) |
3 |
|
f1dom3fv3dif.f |
|- ( ph -> F : { A , B , C } -1-1-> R ) |
4 |
|
f1f |
|- ( F : { A , B , C } -1-1-> R -> F : { A , B , C } --> R ) |
5 |
|
simpr |
|- ( ( ph /\ F : { A , B , C } --> R ) -> F : { A , B , C } --> R ) |
6 |
|
eqidd |
|- ( ph -> A = A ) |
7 |
6
|
3mix1d |
|- ( ph -> ( A = A \/ A = B \/ A = C ) ) |
8 |
1
|
simp1d |
|- ( ph -> A e. X ) |
9 |
|
eltpg |
|- ( A e. X -> ( A e. { A , B , C } <-> ( A = A \/ A = B \/ A = C ) ) ) |
10 |
8 9
|
syl |
|- ( ph -> ( A e. { A , B , C } <-> ( A = A \/ A = B \/ A = C ) ) ) |
11 |
7 10
|
mpbird |
|- ( ph -> A e. { A , B , C } ) |
12 |
11
|
adantr |
|- ( ( ph /\ F : { A , B , C } --> R ) -> A e. { A , B , C } ) |
13 |
5 12
|
ffvelrnd |
|- ( ( ph /\ F : { A , B , C } --> R ) -> ( F ` A ) e. R ) |
14 |
|
eqidd |
|- ( ph -> B = B ) |
15 |
14
|
3mix2d |
|- ( ph -> ( B = A \/ B = B \/ B = C ) ) |
16 |
1
|
simp2d |
|- ( ph -> B e. Y ) |
17 |
|
eltpg |
|- ( B e. Y -> ( B e. { A , B , C } <-> ( B = A \/ B = B \/ B = C ) ) ) |
18 |
16 17
|
syl |
|- ( ph -> ( B e. { A , B , C } <-> ( B = A \/ B = B \/ B = C ) ) ) |
19 |
15 18
|
mpbird |
|- ( ph -> B e. { A , B , C } ) |
20 |
19
|
adantr |
|- ( ( ph /\ F : { A , B , C } --> R ) -> B e. { A , B , C } ) |
21 |
5 20
|
ffvelrnd |
|- ( ( ph /\ F : { A , B , C } --> R ) -> ( F ` B ) e. R ) |
22 |
1
|
simp3d |
|- ( ph -> C e. Z ) |
23 |
|
tpid3g |
|- ( C e. Z -> C e. { A , B , C } ) |
24 |
22 23
|
syl |
|- ( ph -> C e. { A , B , C } ) |
25 |
24
|
adantr |
|- ( ( ph /\ F : { A , B , C } --> R ) -> C e. { A , B , C } ) |
26 |
5 25
|
ffvelrnd |
|- ( ( ph /\ F : { A , B , C } --> R ) -> ( F ` C ) e. R ) |
27 |
13 21 26
|
3jca |
|- ( ( ph /\ F : { A , B , C } --> R ) -> ( ( F ` A ) e. R /\ ( F ` B ) e. R /\ ( F ` C ) e. R ) ) |
28 |
27
|
expcom |
|- ( F : { A , B , C } --> R -> ( ph -> ( ( F ` A ) e. R /\ ( F ` B ) e. R /\ ( F ` C ) e. R ) ) ) |
29 |
4 28
|
syl |
|- ( F : { A , B , C } -1-1-> R -> ( ph -> ( ( F ` A ) e. R /\ ( F ` B ) e. R /\ ( F ` C ) e. R ) ) ) |
30 |
3 29
|
mpcom |
|- ( ph -> ( ( F ` A ) e. R /\ ( F ` B ) e. R /\ ( F ` C ) e. R ) ) |
31 |
1 2 3
|
f1dom3fv3dif |
|- ( ph -> ( ( F ` A ) =/= ( F ` B ) /\ ( F ` A ) =/= ( F ` C ) /\ ( F ` B ) =/= ( F ` C ) ) ) |
32 |
|
neeq1 |
|- ( x = ( F ` A ) -> ( x =/= y <-> ( F ` A ) =/= y ) ) |
33 |
|
neeq1 |
|- ( x = ( F ` A ) -> ( x =/= z <-> ( F ` A ) =/= z ) ) |
34 |
32 33
|
3anbi12d |
|- ( x = ( F ` A ) -> ( ( x =/= y /\ x =/= z /\ y =/= z ) <-> ( ( F ` A ) =/= y /\ ( F ` A ) =/= z /\ y =/= z ) ) ) |
35 |
|
neeq2 |
|- ( y = ( F ` B ) -> ( ( F ` A ) =/= y <-> ( F ` A ) =/= ( F ` B ) ) ) |
36 |
|
neeq1 |
|- ( y = ( F ` B ) -> ( y =/= z <-> ( F ` B ) =/= z ) ) |
37 |
35 36
|
3anbi13d |
|- ( y = ( F ` B ) -> ( ( ( F ` A ) =/= y /\ ( F ` A ) =/= z /\ y =/= z ) <-> ( ( F ` A ) =/= ( F ` B ) /\ ( F ` A ) =/= z /\ ( F ` B ) =/= z ) ) ) |
38 |
|
neeq2 |
|- ( z = ( F ` C ) -> ( ( F ` A ) =/= z <-> ( F ` A ) =/= ( F ` C ) ) ) |
39 |
|
neeq2 |
|- ( z = ( F ` C ) -> ( ( F ` B ) =/= z <-> ( F ` B ) =/= ( F ` C ) ) ) |
40 |
38 39
|
3anbi23d |
|- ( z = ( F ` C ) -> ( ( ( F ` A ) =/= ( F ` B ) /\ ( F ` A ) =/= z /\ ( F ` B ) =/= z ) <-> ( ( F ` A ) =/= ( F ` B ) /\ ( F ` A ) =/= ( F ` C ) /\ ( F ` B ) =/= ( F ` C ) ) ) ) |
41 |
34 37 40
|
rspc3ev |
|- ( ( ( ( F ` A ) e. R /\ ( F ` B ) e. R /\ ( F ` C ) e. R ) /\ ( ( F ` A ) =/= ( F ` B ) /\ ( F ` A ) =/= ( F ` C ) /\ ( F ` B ) =/= ( F ` C ) ) ) -> E. x e. R E. y e. R E. z e. R ( x =/= y /\ x =/= z /\ y =/= z ) ) |
42 |
30 31 41
|
syl2anc |
|- ( ph -> E. x e. R E. y e. R E. z e. R ( x =/= y /\ x =/= z /\ y =/= z ) ) |