| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1oabexg.1 |  |-  F = { f | ( f : A -1-1-onto-> B /\ ph ) } | 
						
							| 2 |  | f1of |  |-  ( f : A -1-1-onto-> B -> f : A --> B ) | 
						
							| 3 | 2 | anim1i |  |-  ( ( f : A -1-1-onto-> B /\ ph ) -> ( f : A --> B /\ ph ) ) | 
						
							| 4 | 3 | ss2abi |  |-  { f | ( f : A -1-1-onto-> B /\ ph ) } C_ { f | ( f : A --> B /\ ph ) } | 
						
							| 5 |  | eqid |  |-  { f | ( f : A --> B /\ ph ) } = { f | ( f : A --> B /\ ph ) } | 
						
							| 6 | 5 | fabexg |  |-  ( ( A e. C /\ B e. D ) -> { f | ( f : A --> B /\ ph ) } e. _V ) | 
						
							| 7 |  | ssexg |  |-  ( ( { f | ( f : A -1-1-onto-> B /\ ph ) } C_ { f | ( f : A --> B /\ ph ) } /\ { f | ( f : A --> B /\ ph ) } e. _V ) -> { f | ( f : A -1-1-onto-> B /\ ph ) } e. _V ) | 
						
							| 8 | 4 6 7 | sylancr |  |-  ( ( A e. C /\ B e. D ) -> { f | ( f : A -1-1-onto-> B /\ ph ) } e. _V ) | 
						
							| 9 | 1 8 | eqeltrid |  |-  ( ( A e. C /\ B e. D ) -> F e. _V ) |