| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fdvposlt.d |
|- E = ( C (,) D ) |
| 2 |
|
fdvposlt.a |
|- ( ph -> A e. E ) |
| 3 |
|
fdvposlt.b |
|- ( ph -> B e. E ) |
| 4 |
|
fdvposlt.f |
|- ( ph -> F : E --> RR ) |
| 5 |
|
fdvposlt.c |
|- ( ph -> ( RR _D F ) e. ( E -cn-> RR ) ) |
| 6 |
|
fdvneggt.lt |
|- ( ph -> A < B ) |
| 7 |
|
fdvneggt.1 |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) < 0 ) |
| 8 |
4
|
ffvelcdmda |
|- ( ( ph /\ y e. E ) -> ( F ` y ) e. RR ) |
| 9 |
8
|
renegcld |
|- ( ( ph /\ y e. E ) -> -u ( F ` y ) e. RR ) |
| 10 |
9
|
fmpttd |
|- ( ph -> ( y e. E |-> -u ( F ` y ) ) : E --> RR ) |
| 11 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 12 |
11
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
| 13 |
|
ax-resscn |
|- RR C_ CC |
| 14 |
13 8
|
sselid |
|- ( ( ph /\ y e. E ) -> ( F ` y ) e. CC ) |
| 15 |
|
fvexd |
|- ( ( ph /\ y e. E ) -> ( ( RR _D F ) ` y ) e. _V ) |
| 16 |
4
|
feqmptd |
|- ( ph -> F = ( y e. E |-> ( F ` y ) ) ) |
| 17 |
16
|
oveq2d |
|- ( ph -> ( RR _D F ) = ( RR _D ( y e. E |-> ( F ` y ) ) ) ) |
| 18 |
|
cncff |
|- ( ( RR _D F ) e. ( E -cn-> RR ) -> ( RR _D F ) : E --> RR ) |
| 19 |
5 18
|
syl |
|- ( ph -> ( RR _D F ) : E --> RR ) |
| 20 |
19
|
feqmptd |
|- ( ph -> ( RR _D F ) = ( y e. E |-> ( ( RR _D F ) ` y ) ) ) |
| 21 |
17 20
|
eqtr3d |
|- ( ph -> ( RR _D ( y e. E |-> ( F ` y ) ) ) = ( y e. E |-> ( ( RR _D F ) ` y ) ) ) |
| 22 |
12 14 15 21
|
dvmptneg |
|- ( ph -> ( RR _D ( y e. E |-> -u ( F ` y ) ) ) = ( y e. E |-> -u ( ( RR _D F ) ` y ) ) ) |
| 23 |
19
|
ffvelcdmda |
|- ( ( ph /\ y e. E ) -> ( ( RR _D F ) ` y ) e. RR ) |
| 24 |
23
|
renegcld |
|- ( ( ph /\ y e. E ) -> -u ( ( RR _D F ) ` y ) e. RR ) |
| 25 |
24
|
fmpttd |
|- ( ph -> ( y e. E |-> -u ( ( RR _D F ) ` y ) ) : E --> RR ) |
| 26 |
|
ssid |
|- CC C_ CC |
| 27 |
|
cncfss |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( E -cn-> RR ) C_ ( E -cn-> CC ) ) |
| 28 |
13 26 27
|
mp2an |
|- ( E -cn-> RR ) C_ ( E -cn-> CC ) |
| 29 |
28 5
|
sselid |
|- ( ph -> ( RR _D F ) e. ( E -cn-> CC ) ) |
| 30 |
|
eqid |
|- ( y e. E |-> -u ( ( RR _D F ) ` y ) ) = ( y e. E |-> -u ( ( RR _D F ) ` y ) ) |
| 31 |
30
|
negfcncf |
|- ( ( RR _D F ) e. ( E -cn-> CC ) -> ( y e. E |-> -u ( ( RR _D F ) ` y ) ) e. ( E -cn-> CC ) ) |
| 32 |
29 31
|
syl |
|- ( ph -> ( y e. E |-> -u ( ( RR _D F ) ` y ) ) e. ( E -cn-> CC ) ) |
| 33 |
|
cncfcdm |
|- ( ( RR C_ CC /\ ( y e. E |-> -u ( ( RR _D F ) ` y ) ) e. ( E -cn-> CC ) ) -> ( ( y e. E |-> -u ( ( RR _D F ) ` y ) ) e. ( E -cn-> RR ) <-> ( y e. E |-> -u ( ( RR _D F ) ` y ) ) : E --> RR ) ) |
| 34 |
13 32 33
|
sylancr |
|- ( ph -> ( ( y e. E |-> -u ( ( RR _D F ) ` y ) ) e. ( E -cn-> RR ) <-> ( y e. E |-> -u ( ( RR _D F ) ` y ) ) : E --> RR ) ) |
| 35 |
25 34
|
mpbird |
|- ( ph -> ( y e. E |-> -u ( ( RR _D F ) ` y ) ) e. ( E -cn-> RR ) ) |
| 36 |
22 35
|
eqeltrd |
|- ( ph -> ( RR _D ( y e. E |-> -u ( F ` y ) ) ) e. ( E -cn-> RR ) ) |
| 37 |
19
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( RR _D F ) : E --> RR ) |
| 38 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
| 39 |
38
|
a1i |
|- ( ph -> ( A (,) B ) C_ ( A [,] B ) ) |
| 40 |
1 2 3
|
fct2relem |
|- ( ph -> ( A [,] B ) C_ E ) |
| 41 |
39 40
|
sstrd |
|- ( ph -> ( A (,) B ) C_ E ) |
| 42 |
41
|
sselda |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. E ) |
| 43 |
37 42
|
ffvelcdmd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. RR ) |
| 44 |
43
|
lt0neg1d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( RR _D F ) ` x ) < 0 <-> 0 < -u ( ( RR _D F ) ` x ) ) ) |
| 45 |
7 44
|
mpbid |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 < -u ( ( RR _D F ) ` x ) ) |
| 46 |
22
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( RR _D ( y e. E |-> -u ( F ` y ) ) ) = ( y e. E |-> -u ( ( RR _D F ) ` y ) ) ) |
| 47 |
46
|
fveq1d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D ( y e. E |-> -u ( F ` y ) ) ) ` x ) = ( ( y e. E |-> -u ( ( RR _D F ) ` y ) ) ` x ) ) |
| 48 |
30
|
a1i |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( y e. E |-> -u ( ( RR _D F ) ` y ) ) = ( y e. E |-> -u ( ( RR _D F ) ` y ) ) ) |
| 49 |
|
simpr |
|- ( ( ( ph /\ x e. ( A (,) B ) ) /\ y = x ) -> y = x ) |
| 50 |
49
|
fveq2d |
|- ( ( ( ph /\ x e. ( A (,) B ) ) /\ y = x ) -> ( ( RR _D F ) ` y ) = ( ( RR _D F ) ` x ) ) |
| 51 |
50
|
negeqd |
|- ( ( ( ph /\ x e. ( A (,) B ) ) /\ y = x ) -> -u ( ( RR _D F ) ` y ) = -u ( ( RR _D F ) ` x ) ) |
| 52 |
43
|
renegcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> -u ( ( RR _D F ) ` x ) e. RR ) |
| 53 |
48 51 42 52
|
fvmptd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( y e. E |-> -u ( ( RR _D F ) ` y ) ) ` x ) = -u ( ( RR _D F ) ` x ) ) |
| 54 |
47 53
|
eqtrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D ( y e. E |-> -u ( F ` y ) ) ) ` x ) = -u ( ( RR _D F ) ` x ) ) |
| 55 |
45 54
|
breqtrrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 < ( ( RR _D ( y e. E |-> -u ( F ` y ) ) ) ` x ) ) |
| 56 |
1 2 3 10 36 6 55
|
fdvposlt |
|- ( ph -> ( ( y e. E |-> -u ( F ` y ) ) ` A ) < ( ( y e. E |-> -u ( F ` y ) ) ` B ) ) |
| 57 |
|
eqidd |
|- ( ph -> ( y e. E |-> -u ( F ` y ) ) = ( y e. E |-> -u ( F ` y ) ) ) |
| 58 |
|
simpr |
|- ( ( ph /\ y = A ) -> y = A ) |
| 59 |
58
|
fveq2d |
|- ( ( ph /\ y = A ) -> ( F ` y ) = ( F ` A ) ) |
| 60 |
59
|
negeqd |
|- ( ( ph /\ y = A ) -> -u ( F ` y ) = -u ( F ` A ) ) |
| 61 |
4 2
|
ffvelcdmd |
|- ( ph -> ( F ` A ) e. RR ) |
| 62 |
61
|
renegcld |
|- ( ph -> -u ( F ` A ) e. RR ) |
| 63 |
57 60 2 62
|
fvmptd |
|- ( ph -> ( ( y e. E |-> -u ( F ` y ) ) ` A ) = -u ( F ` A ) ) |
| 64 |
|
simpr |
|- ( ( ph /\ y = B ) -> y = B ) |
| 65 |
64
|
fveq2d |
|- ( ( ph /\ y = B ) -> ( F ` y ) = ( F ` B ) ) |
| 66 |
65
|
negeqd |
|- ( ( ph /\ y = B ) -> -u ( F ` y ) = -u ( F ` B ) ) |
| 67 |
4 3
|
ffvelcdmd |
|- ( ph -> ( F ` B ) e. RR ) |
| 68 |
67
|
renegcld |
|- ( ph -> -u ( F ` B ) e. RR ) |
| 69 |
57 66 3 68
|
fvmptd |
|- ( ph -> ( ( y e. E |-> -u ( F ` y ) ) ` B ) = -u ( F ` B ) ) |
| 70 |
56 63 69
|
3brtr3d |
|- ( ph -> -u ( F ` A ) < -u ( F ` B ) ) |
| 71 |
67 61
|
ltnegd |
|- ( ph -> ( ( F ` B ) < ( F ` A ) <-> -u ( F ` A ) < -u ( F ` B ) ) ) |
| 72 |
70 71
|
mpbird |
|- ( ph -> ( F ` B ) < ( F ` A ) ) |