| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fdvposlt.d |
⊢ 𝐸 = ( 𝐶 (,) 𝐷 ) |
| 2 |
|
fdvposlt.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐸 ) |
| 3 |
|
fdvposlt.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐸 ) |
| 4 |
|
fdvposlt.f |
⊢ ( 𝜑 → 𝐹 : 𝐸 ⟶ ℝ ) |
| 5 |
|
fdvposlt.c |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( 𝐸 –cn→ ℝ ) ) |
| 6 |
|
fdvneggt.lt |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 7 |
|
fdvneggt.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) < 0 ) |
| 8 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐸 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 9 |
8
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐸 ) → - ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 10 |
9
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) : 𝐸 ⟶ ℝ ) |
| 11 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 13 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 14 |
13 8
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐸 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 15 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐸 ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ V ) |
| 16 |
4
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 17 |
16
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( ℝ D ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 18 |
|
cncff |
⊢ ( ( ℝ D 𝐹 ) ∈ ( 𝐸 –cn→ ℝ ) → ( ℝ D 𝐹 ) : 𝐸 ⟶ ℝ ) |
| 19 |
5 18
|
syl |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : 𝐸 ⟶ ℝ ) |
| 20 |
19
|
feqmptd |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( 𝑦 ∈ 𝐸 ↦ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
| 21 |
17 20
|
eqtr3d |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐸 ↦ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
| 22 |
12 14 15 21
|
dvmptneg |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
| 23 |
19
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐸 ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ℝ ) |
| 24 |
23
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐸 ) → - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ℝ ) |
| 25 |
24
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) : 𝐸 ⟶ ℝ ) |
| 26 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 27 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐸 –cn→ ℝ ) ⊆ ( 𝐸 –cn→ ℂ ) ) |
| 28 |
13 26 27
|
mp2an |
⊢ ( 𝐸 –cn→ ℝ ) ⊆ ( 𝐸 –cn→ ℂ ) |
| 29 |
28 5
|
sselid |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( 𝐸 –cn→ ℂ ) ) |
| 30 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) = ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) |
| 31 |
30
|
negfcncf |
⊢ ( ( ℝ D 𝐹 ) ∈ ( 𝐸 –cn→ ℂ ) → ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ∈ ( 𝐸 –cn→ ℂ ) ) |
| 32 |
29 31
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ∈ ( 𝐸 –cn→ ℂ ) ) |
| 33 |
|
cncfcdm |
⊢ ( ( ℝ ⊆ ℂ ∧ ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ∈ ( 𝐸 –cn→ ℂ ) ) → ( ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ∈ ( 𝐸 –cn→ ℝ ) ↔ ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) : 𝐸 ⟶ ℝ ) ) |
| 34 |
13 32 33
|
sylancr |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ∈ ( 𝐸 –cn→ ℝ ) ↔ ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) : 𝐸 ⟶ ℝ ) ) |
| 35 |
25 34
|
mpbird |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ∈ ( 𝐸 –cn→ ℝ ) ) |
| 36 |
22 35
|
eqeltrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) ) ∈ ( 𝐸 –cn→ ℝ ) ) |
| 37 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ℝ D 𝐹 ) : 𝐸 ⟶ ℝ ) |
| 38 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
| 39 |
38
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 40 |
1 2 3
|
fct2relem |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐸 ) |
| 41 |
39 40
|
sstrd |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐸 ) |
| 42 |
41
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ 𝐸 ) |
| 43 |
37 42
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
| 44 |
43
|
lt0neg1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) < 0 ↔ 0 < - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 45 |
7 44
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 < - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 46 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ℝ D ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
| 47 |
46
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ‘ 𝑥 ) ) |
| 48 |
30
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) = ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
| 49 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 ) |
| 50 |
49
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑦 = 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 51 |
50
|
negeqd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑦 = 𝑥 ) → - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 52 |
43
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
| 53 |
48 51 42 52
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑦 ∈ 𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ‘ 𝑥 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 54 |
47 53
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑥 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 55 |
45 54
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 < ( ( ℝ D ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑥 ) ) |
| 56 |
1 2 3 10 36 6 55
|
fdvposlt |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐴 ) < ( ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐵 ) ) |
| 57 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) = ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) ) |
| 58 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → 𝑦 = 𝐴 ) |
| 59 |
58
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 60 |
59
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → - ( 𝐹 ‘ 𝑦 ) = - ( 𝐹 ‘ 𝐴 ) ) |
| 61 |
4 2
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
| 62 |
61
|
renegcld |
⊢ ( 𝜑 → - ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
| 63 |
57 60 2 62
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐴 ) = - ( 𝐹 ‘ 𝐴 ) ) |
| 64 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) |
| 65 |
64
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 66 |
65
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → - ( 𝐹 ‘ 𝑦 ) = - ( 𝐹 ‘ 𝐵 ) ) |
| 67 |
4 3
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
| 68 |
67
|
renegcld |
⊢ ( 𝜑 → - ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
| 69 |
57 66 3 68
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐸 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐵 ) = - ( 𝐹 ‘ 𝐵 ) ) |
| 70 |
56 63 69
|
3brtr3d |
⊢ ( 𝜑 → - ( 𝐹 ‘ 𝐴 ) < - ( 𝐹 ‘ 𝐵 ) ) |
| 71 |
67 61
|
ltnegd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) < ( 𝐹 ‘ 𝐴 ) ↔ - ( 𝐹 ‘ 𝐴 ) < - ( 𝐹 ‘ 𝐵 ) ) ) |
| 72 |
70 71
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) < ( 𝐹 ‘ 𝐴 ) ) |