Metamath Proof Explorer


Theorem fdvposle

Description: Functions with a nonnegative derivative, i.e. monotonously growing functions, preserve ordering. (Contributed by Thierry Arnoux, 20-Dec-2021)

Ref Expression
Hypotheses fdvposlt.d 𝐸 = ( 𝐶 (,) 𝐷 )
fdvposlt.a ( 𝜑𝐴𝐸 )
fdvposlt.b ( 𝜑𝐵𝐸 )
fdvposlt.f ( 𝜑𝐹 : 𝐸 ⟶ ℝ )
fdvposlt.c ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( 𝐸cn→ ℝ ) )
fdvposle.le ( 𝜑𝐴𝐵 )
fdvposle.1 ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) )
Assertion fdvposle ( 𝜑 → ( 𝐹𝐴 ) ≤ ( 𝐹𝐵 ) )

Proof

Step Hyp Ref Expression
1 fdvposlt.d 𝐸 = ( 𝐶 (,) 𝐷 )
2 fdvposlt.a ( 𝜑𝐴𝐸 )
3 fdvposlt.b ( 𝜑𝐵𝐸 )
4 fdvposlt.f ( 𝜑𝐹 : 𝐸 ⟶ ℝ )
5 fdvposlt.c ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( 𝐸cn→ ℝ ) )
6 fdvposle.le ( 𝜑𝐴𝐵 )
7 fdvposle.1 ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) )
8 ioossicc ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 )
9 8 a1i ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) )
10 ioombl ( 𝐴 (,) 𝐵 ) ∈ dom vol
11 10 a1i ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ dom vol )
12 cncff ( ( ℝ D 𝐹 ) ∈ ( 𝐸cn→ ℝ ) → ( ℝ D 𝐹 ) : 𝐸 ⟶ ℝ )
13 5 12 syl ( 𝜑 → ( ℝ D 𝐹 ) : 𝐸 ⟶ ℝ )
14 13 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ℝ D 𝐹 ) : 𝐸 ⟶ ℝ )
15 1 2 3 fct2relem ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐸 )
16 15 sselda ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥𝐸 )
17 14 16 ffvelrnd ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ )
18 ioossre ( 𝐶 (,) 𝐷 ) ⊆ ℝ
19 1 18 eqsstri 𝐸 ⊆ ℝ
20 19 2 sseldi ( 𝜑𝐴 ∈ ℝ )
21 19 3 sseldi ( 𝜑𝐵 ∈ ℝ )
22 ax-resscn ℝ ⊆ ℂ
23 ssid ℂ ⊆ ℂ
24 cncfss ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )
25 22 23 24 mp2an ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ )
26 13 15 feqresmpt ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) )
27 rescncf ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐸 → ( ( ℝ D 𝐹 ) ∈ ( 𝐸cn→ ℝ ) → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) )
28 15 5 27 sylc ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) )
29 26 28 eqeltrrd ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) )
30 25 29 sseldi ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )
31 cniccibl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ 𝐿1 )
32 20 21 30 31 syl3anc ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ 𝐿1 )
33 9 11 17 32 iblss ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ 𝐿1 )
34 13 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ℝ D 𝐹 ) : 𝐸 ⟶ ℝ )
35 9 sselda ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) )
36 35 16 syldan ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥𝐸 )
37 34 36 ffvelrnd ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ )
38 33 37 7 itgge0 ( 𝜑 → 0 ≤ ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) d 𝑥 )
39 fss ( ( 𝐹 : 𝐸 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : 𝐸 ⟶ ℂ )
40 4 22 39 sylancl ( 𝜑𝐹 : 𝐸 ⟶ ℂ )
41 cncfss ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐸cn→ ℝ ) ⊆ ( 𝐸cn→ ℂ ) )
42 22 23 41 mp2an ( 𝐸cn→ ℝ ) ⊆ ( 𝐸cn→ ℂ )
43 42 5 sseldi ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( 𝐸cn→ ℂ ) )
44 1 2 3 6 40 43 ftc2re ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) d 𝑥 = ( ( 𝐹𝐵 ) − ( 𝐹𝐴 ) ) )
45 38 44 breqtrd ( 𝜑 → 0 ≤ ( ( 𝐹𝐵 ) − ( 𝐹𝐴 ) ) )
46 4 3 ffvelrnd ( 𝜑 → ( 𝐹𝐵 ) ∈ ℝ )
47 4 2 ffvelrnd ( 𝜑 → ( 𝐹𝐴 ) ∈ ℝ )
48 46 47 subge0d ( 𝜑 → ( 0 ≤ ( ( 𝐹𝐵 ) − ( 𝐹𝐴 ) ) ↔ ( 𝐹𝐴 ) ≤ ( 𝐹𝐵 ) ) )
49 45 48 mpbid ( 𝜑 → ( 𝐹𝐴 ) ≤ ( 𝐹𝐵 ) )