| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fdvposlt.d | ⊢ 𝐸  =  ( 𝐶 (,) 𝐷 ) | 
						
							| 2 |  | fdvposlt.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐸 ) | 
						
							| 3 |  | fdvposlt.b | ⊢ ( 𝜑  →  𝐵  ∈  𝐸 ) | 
						
							| 4 |  | fdvposlt.f | ⊢ ( 𝜑  →  𝐹 : 𝐸 ⟶ ℝ ) | 
						
							| 5 |  | fdvposlt.c | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 )  ∈  ( 𝐸 –cn→ ℝ ) ) | 
						
							| 6 |  | fdvposle.le | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 7 |  | fdvposle.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  0  ≤  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) | 
						
							| 8 |  | ioossicc | ⊢ ( 𝐴 (,) 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 10 |  | ioombl | ⊢ ( 𝐴 (,) 𝐵 )  ∈  dom  vol | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ∈  dom  vol ) | 
						
							| 12 |  | cncff | ⊢ ( ( ℝ  D  𝐹 )  ∈  ( 𝐸 –cn→ ℝ )  →  ( ℝ  D  𝐹 ) : 𝐸 ⟶ ℝ ) | 
						
							| 13 | 5 12 | syl | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 ) : 𝐸 ⟶ ℝ ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ℝ  D  𝐹 ) : 𝐸 ⟶ ℝ ) | 
						
							| 15 | 1 2 3 | fct2relem | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  𝐸 ) | 
						
							| 16 | 15 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  𝐸 ) | 
						
							| 17 | 14 16 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 18 |  | ioossre | ⊢ ( 𝐶 (,) 𝐷 )  ⊆  ℝ | 
						
							| 19 | 1 18 | eqsstri | ⊢ 𝐸  ⊆  ℝ | 
						
							| 20 | 19 2 | sselid | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 21 | 19 3 | sselid | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 22 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 23 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 24 |  | cncfss | ⊢ ( ( ℝ  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ )  ⊆  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 25 | 22 23 24 | mp2an | ⊢ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ )  ⊆  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) | 
						
							| 26 | 13 15 | feqresmpt | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) )  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) | 
						
							| 27 |  | rescncf | ⊢ ( ( 𝐴 [,] 𝐵 )  ⊆  𝐸  →  ( ( ℝ  D  𝐹 )  ∈  ( 𝐸 –cn→ ℝ )  →  ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) ) | 
						
							| 28 | 15 5 27 | sylc | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | 
						
							| 29 | 26 28 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | 
						
							| 30 | 25 29 | sselid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 31 |  | cniccibl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) )  ∈  𝐿1 ) | 
						
							| 32 | 20 21 30 31 | syl3anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) )  ∈  𝐿1 ) | 
						
							| 33 | 9 11 17 32 | iblss | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) )  ∈  𝐿1 ) | 
						
							| 34 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ℝ  D  𝐹 ) : 𝐸 ⟶ ℝ ) | 
						
							| 35 | 9 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝑥  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 36 | 35 16 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝑥  ∈  𝐸 ) | 
						
							| 37 | 34 36 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 38 | 33 37 7 | itgge0 | ⊢ ( 𝜑  →  0  ≤  ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  d 𝑥 ) | 
						
							| 39 |  | fss | ⊢ ( ( 𝐹 : 𝐸 ⟶ ℝ  ∧  ℝ  ⊆  ℂ )  →  𝐹 : 𝐸 ⟶ ℂ ) | 
						
							| 40 | 4 22 39 | sylancl | ⊢ ( 𝜑  →  𝐹 : 𝐸 ⟶ ℂ ) | 
						
							| 41 |  | cncfss | ⊢ ( ( ℝ  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( 𝐸 –cn→ ℝ )  ⊆  ( 𝐸 –cn→ ℂ ) ) | 
						
							| 42 | 22 23 41 | mp2an | ⊢ ( 𝐸 –cn→ ℝ )  ⊆  ( 𝐸 –cn→ ℂ ) | 
						
							| 43 | 42 5 | sselid | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 )  ∈  ( 𝐸 –cn→ ℂ ) ) | 
						
							| 44 | 1 2 3 6 40 43 | ftc2re | ⊢ ( 𝜑  →  ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  d 𝑥  =  ( ( 𝐹 ‘ 𝐵 )  −  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 45 | 38 44 | breqtrd | ⊢ ( 𝜑  →  0  ≤  ( ( 𝐹 ‘ 𝐵 )  −  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 46 | 4 3 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 47 | 4 2 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 48 | 46 47 | subge0d | ⊢ ( 𝜑  →  ( 0  ≤  ( ( 𝐹 ‘ 𝐵 )  −  ( 𝐹 ‘ 𝐴 ) )  ↔  ( 𝐹 ‘ 𝐴 )  ≤  ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 49 | 45 48 | mpbid | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  ≤  ( 𝐹 ‘ 𝐵 ) ) |