Metamath Proof Explorer


Theorem fdvnegge

Description: Functions with a nonpositive derivative, i.e., decreasing functions, preserve ordering. (Contributed by Thierry Arnoux, 20-Dec-2021)

Ref Expression
Hypotheses fdvposlt.d 𝐸 = ( 𝐶 (,) 𝐷 )
fdvposlt.a ( 𝜑𝐴𝐸 )
fdvposlt.b ( 𝜑𝐵𝐸 )
fdvposlt.f ( 𝜑𝐹 : 𝐸 ⟶ ℝ )
fdvposlt.c ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( 𝐸cn→ ℝ ) )
fdvnegge.le ( 𝜑𝐴𝐵 )
fdvnegge.1 ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ≤ 0 )
Assertion fdvnegge ( 𝜑 → ( 𝐹𝐵 ) ≤ ( 𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 fdvposlt.d 𝐸 = ( 𝐶 (,) 𝐷 )
2 fdvposlt.a ( 𝜑𝐴𝐸 )
3 fdvposlt.b ( 𝜑𝐵𝐸 )
4 fdvposlt.f ( 𝜑𝐹 : 𝐸 ⟶ ℝ )
5 fdvposlt.c ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( 𝐸cn→ ℝ ) )
6 fdvnegge.le ( 𝜑𝐴𝐵 )
7 fdvnegge.1 ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ≤ 0 )
8 4 ffvelrnda ( ( 𝜑𝑦𝐸 ) → ( 𝐹𝑦 ) ∈ ℝ )
9 8 renegcld ( ( 𝜑𝑦𝐸 ) → - ( 𝐹𝑦 ) ∈ ℝ )
10 9 fmpttd ( 𝜑 → ( 𝑦𝐸 ↦ - ( 𝐹𝑦 ) ) : 𝐸 ⟶ ℝ )
11 reelprrecn ℝ ∈ { ℝ , ℂ }
12 11 a1i ( 𝜑 → ℝ ∈ { ℝ , ℂ } )
13 ax-resscn ℝ ⊆ ℂ
14 13 8 sseldi ( ( 𝜑𝑦𝐸 ) → ( 𝐹𝑦 ) ∈ ℂ )
15 fvexd ( ( 𝜑𝑦𝐸 ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ V )
16 4 feqmptd ( 𝜑𝐹 = ( 𝑦𝐸 ↦ ( 𝐹𝑦 ) ) )
17 16 oveq2d ( 𝜑 → ( ℝ D 𝐹 ) = ( ℝ D ( 𝑦𝐸 ↦ ( 𝐹𝑦 ) ) ) )
18 cncff ( ( ℝ D 𝐹 ) ∈ ( 𝐸cn→ ℝ ) → ( ℝ D 𝐹 ) : 𝐸 ⟶ ℝ )
19 5 18 syl ( 𝜑 → ( ℝ D 𝐹 ) : 𝐸 ⟶ ℝ )
20 19 feqmptd ( 𝜑 → ( ℝ D 𝐹 ) = ( 𝑦𝐸 ↦ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) )
21 17 20 eqtr3d ( 𝜑 → ( ℝ D ( 𝑦𝐸 ↦ ( 𝐹𝑦 ) ) ) = ( 𝑦𝐸 ↦ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) )
22 12 14 15 21 dvmptneg ( 𝜑 → ( ℝ D ( 𝑦𝐸 ↦ - ( 𝐹𝑦 ) ) ) = ( 𝑦𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) )
23 19 ffvelrnda ( ( 𝜑𝑦𝐸 ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ℝ )
24 23 renegcld ( ( 𝜑𝑦𝐸 ) → - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ℝ )
25 24 fmpttd ( 𝜑 → ( 𝑦𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) : 𝐸 ⟶ ℝ )
26 ssid ℂ ⊆ ℂ
27 cncfss ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐸cn→ ℝ ) ⊆ ( 𝐸cn→ ℂ ) )
28 13 26 27 mp2an ( 𝐸cn→ ℝ ) ⊆ ( 𝐸cn→ ℂ )
29 28 5 sseldi ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( 𝐸cn→ ℂ ) )
30 eqid ( 𝑦𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) = ( 𝑦𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) )
31 30 negfcncf ( ( ℝ D 𝐹 ) ∈ ( 𝐸cn→ ℂ ) → ( 𝑦𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ∈ ( 𝐸cn→ ℂ ) )
32 29 31 syl ( 𝜑 → ( 𝑦𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ∈ ( 𝐸cn→ ℂ ) )
33 cncffvrn ( ( ℝ ⊆ ℂ ∧ ( 𝑦𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ∈ ( 𝐸cn→ ℂ ) ) → ( ( 𝑦𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ∈ ( 𝐸cn→ ℝ ) ↔ ( 𝑦𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) : 𝐸 ⟶ ℝ ) )
34 13 32 33 sylancr ( 𝜑 → ( ( 𝑦𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ∈ ( 𝐸cn→ ℝ ) ↔ ( 𝑦𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) : 𝐸 ⟶ ℝ ) )
35 25 34 mpbird ( 𝜑 → ( 𝑦𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ∈ ( 𝐸cn→ ℝ ) )
36 22 35 eqeltrd ( 𝜑 → ( ℝ D ( 𝑦𝐸 ↦ - ( 𝐹𝑦 ) ) ) ∈ ( 𝐸cn→ ℝ ) )
37 19 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ℝ D 𝐹 ) : 𝐸 ⟶ ℝ )
38 ioossicc ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 )
39 38 a1i ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) )
40 1 2 3 fct2relem ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐸 )
41 39 40 sstrd ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐸 )
42 41 sselda ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥𝐸 )
43 37 42 ffvelrnd ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ )
44 43 le0neg1d ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ≤ 0 ↔ 0 ≤ - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) )
45 7 44 mpbid ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ≤ - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) )
46 22 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ℝ D ( 𝑦𝐸 ↦ - ( 𝐹𝑦 ) ) ) = ( 𝑦𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) )
47 46 fveq1d ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D ( 𝑦𝐸 ↦ - ( 𝐹𝑦 ) ) ) ‘ 𝑥 ) = ( ( 𝑦𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ‘ 𝑥 ) )
48 30 a1i ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑦𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) = ( 𝑦𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) )
49 simpr ( ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 )
50 49 fveq2d ( ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑦 = 𝑥 ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) )
51 50 negeqd ( ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑦 = 𝑥 ) → - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) )
52 43 renegcld ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ )
53 48 51 42 52 fvmptd ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑦𝐸 ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ‘ 𝑥 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) )
54 47 53 eqtrd ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D ( 𝑦𝐸 ↦ - ( 𝐹𝑦 ) ) ) ‘ 𝑥 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) )
55 45 54 breqtrrd ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ≤ ( ( ℝ D ( 𝑦𝐸 ↦ - ( 𝐹𝑦 ) ) ) ‘ 𝑥 ) )
56 1 2 3 10 36 6 55 fdvposle ( 𝜑 → ( ( 𝑦𝐸 ↦ - ( 𝐹𝑦 ) ) ‘ 𝐴 ) ≤ ( ( 𝑦𝐸 ↦ - ( 𝐹𝑦 ) ) ‘ 𝐵 ) )
57 eqidd ( 𝜑 → ( 𝑦𝐸 ↦ - ( 𝐹𝑦 ) ) = ( 𝑦𝐸 ↦ - ( 𝐹𝑦 ) ) )
58 simpr ( ( 𝜑𝑦 = 𝐴 ) → 𝑦 = 𝐴 )
59 58 fveq2d ( ( 𝜑𝑦 = 𝐴 ) → ( 𝐹𝑦 ) = ( 𝐹𝐴 ) )
60 59 negeqd ( ( 𝜑𝑦 = 𝐴 ) → - ( 𝐹𝑦 ) = - ( 𝐹𝐴 ) )
61 4 2 ffvelrnd ( 𝜑 → ( 𝐹𝐴 ) ∈ ℝ )
62 61 renegcld ( 𝜑 → - ( 𝐹𝐴 ) ∈ ℝ )
63 57 60 2 62 fvmptd ( 𝜑 → ( ( 𝑦𝐸 ↦ - ( 𝐹𝑦 ) ) ‘ 𝐴 ) = - ( 𝐹𝐴 ) )
64 simpr ( ( 𝜑𝑦 = 𝐵 ) → 𝑦 = 𝐵 )
65 64 fveq2d ( ( 𝜑𝑦 = 𝐵 ) → ( 𝐹𝑦 ) = ( 𝐹𝐵 ) )
66 65 negeqd ( ( 𝜑𝑦 = 𝐵 ) → - ( 𝐹𝑦 ) = - ( 𝐹𝐵 ) )
67 4 3 ffvelrnd ( 𝜑 → ( 𝐹𝐵 ) ∈ ℝ )
68 67 renegcld ( 𝜑 → - ( 𝐹𝐵 ) ∈ ℝ )
69 57 66 3 68 fvmptd ( 𝜑 → ( ( 𝑦𝐸 ↦ - ( 𝐹𝑦 ) ) ‘ 𝐵 ) = - ( 𝐹𝐵 ) )
70 56 63 69 3brtr3d ( 𝜑 → - ( 𝐹𝐴 ) ≤ - ( 𝐹𝐵 ) )
71 67 61 lenegd ( 𝜑 → ( ( 𝐹𝐵 ) ≤ ( 𝐹𝐴 ) ↔ - ( 𝐹𝐴 ) ≤ - ( 𝐹𝐵 ) ) )
72 70 71 mpbird ( 𝜑 → ( 𝐹𝐵 ) ≤ ( 𝐹𝐴 ) )