| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fdvposlt.d | ⊢ 𝐸  =  ( 𝐶 (,) 𝐷 ) | 
						
							| 2 |  | fdvposlt.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐸 ) | 
						
							| 3 |  | fdvposlt.b | ⊢ ( 𝜑  →  𝐵  ∈  𝐸 ) | 
						
							| 4 |  | fdvposlt.f | ⊢ ( 𝜑  →  𝐹 : 𝐸 ⟶ ℝ ) | 
						
							| 5 |  | fdvposlt.c | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 )  ∈  ( 𝐸 –cn→ ℝ ) ) | 
						
							| 6 |  | fdvnegge.le | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 7 |  | fdvnegge.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  ≤  0 ) | 
						
							| 8 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐸 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 9 | 8 | renegcld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐸 )  →  - ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 10 | 9 | fmpttd | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐸  ↦  - ( 𝐹 ‘ 𝑦 ) ) : 𝐸 ⟶ ℝ ) | 
						
							| 11 |  | reelprrecn | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 13 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 14 | 13 8 | sselid | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐸 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 15 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐸 )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  ∈  V ) | 
						
							| 16 | 4 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑦  ∈  𝐸  ↦  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 )  =  ( ℝ  D  ( 𝑦  ∈  𝐸  ↦  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 18 |  | cncff | ⊢ ( ( ℝ  D  𝐹 )  ∈  ( 𝐸 –cn→ ℝ )  →  ( ℝ  D  𝐹 ) : 𝐸 ⟶ ℝ ) | 
						
							| 19 | 5 18 | syl | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 ) : 𝐸 ⟶ ℝ ) | 
						
							| 20 | 19 | feqmptd | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 )  =  ( 𝑦  ∈  𝐸  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑦 ) ) ) | 
						
							| 21 | 17 20 | eqtr3d | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑦  ∈  𝐸  ↦  ( 𝐹 ‘ 𝑦 ) ) )  =  ( 𝑦  ∈  𝐸  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑦 ) ) ) | 
						
							| 22 | 12 14 15 21 | dvmptneg | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑦  ∈  𝐸  ↦  - ( 𝐹 ‘ 𝑦 ) ) )  =  ( 𝑦  ∈  𝐸  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑦 ) ) ) | 
						
							| 23 | 19 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐸 )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 24 | 23 | renegcld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐸 )  →  - ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 25 | 24 | fmpttd | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐸  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑦 ) ) : 𝐸 ⟶ ℝ ) | 
						
							| 26 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 27 |  | cncfss | ⊢ ( ( ℝ  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( 𝐸 –cn→ ℝ )  ⊆  ( 𝐸 –cn→ ℂ ) ) | 
						
							| 28 | 13 26 27 | mp2an | ⊢ ( 𝐸 –cn→ ℝ )  ⊆  ( 𝐸 –cn→ ℂ ) | 
						
							| 29 | 28 5 | sselid | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 )  ∈  ( 𝐸 –cn→ ℂ ) ) | 
						
							| 30 |  | eqid | ⊢ ( 𝑦  ∈  𝐸  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑦 ) )  =  ( 𝑦  ∈  𝐸  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑦 ) ) | 
						
							| 31 | 30 | negfcncf | ⊢ ( ( ℝ  D  𝐹 )  ∈  ( 𝐸 –cn→ ℂ )  →  ( 𝑦  ∈  𝐸  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑦 ) )  ∈  ( 𝐸 –cn→ ℂ ) ) | 
						
							| 32 | 29 31 | syl | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐸  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑦 ) )  ∈  ( 𝐸 –cn→ ℂ ) ) | 
						
							| 33 |  | cncfcdm | ⊢ ( ( ℝ  ⊆  ℂ  ∧  ( 𝑦  ∈  𝐸  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑦 ) )  ∈  ( 𝐸 –cn→ ℂ ) )  →  ( ( 𝑦  ∈  𝐸  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑦 ) )  ∈  ( 𝐸 –cn→ ℝ )  ↔  ( 𝑦  ∈  𝐸  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑦 ) ) : 𝐸 ⟶ ℝ ) ) | 
						
							| 34 | 13 32 33 | sylancr | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐸  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑦 ) )  ∈  ( 𝐸 –cn→ ℝ )  ↔  ( 𝑦  ∈  𝐸  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑦 ) ) : 𝐸 ⟶ ℝ ) ) | 
						
							| 35 | 25 34 | mpbird | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐸  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑦 ) )  ∈  ( 𝐸 –cn→ ℝ ) ) | 
						
							| 36 | 22 35 | eqeltrd | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑦  ∈  𝐸  ↦  - ( 𝐹 ‘ 𝑦 ) ) )  ∈  ( 𝐸 –cn→ ℝ ) ) | 
						
							| 37 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ℝ  D  𝐹 ) : 𝐸 ⟶ ℝ ) | 
						
							| 38 |  | ioossicc | ⊢ ( 𝐴 (,) 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 ) | 
						
							| 39 | 38 | a1i | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 40 | 1 2 3 | fct2relem | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  𝐸 ) | 
						
							| 41 | 39 40 | sstrd | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ⊆  𝐸 ) | 
						
							| 42 | 41 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝑥  ∈  𝐸 ) | 
						
							| 43 | 37 42 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 44 | 43 | le0neg1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  ≤  0  ↔  0  ≤  - ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) | 
						
							| 45 | 7 44 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  0  ≤  - ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) | 
						
							| 46 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ℝ  D  ( 𝑦  ∈  𝐸  ↦  - ( 𝐹 ‘ 𝑦 ) ) )  =  ( 𝑦  ∈  𝐸  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑦 ) ) ) | 
						
							| 47 | 46 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( ℝ  D  ( 𝑦  ∈  𝐸  ↦  - ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑥 )  =  ( ( 𝑦  ∈  𝐸  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑦 ) ) ‘ 𝑥 ) ) | 
						
							| 48 | 30 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( 𝑦  ∈  𝐸  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑦 ) )  =  ( 𝑦  ∈  𝐸  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑦 ) ) ) | 
						
							| 49 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  ∧  𝑦  =  𝑥 )  →  𝑦  =  𝑥 ) | 
						
							| 50 | 49 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  ∧  𝑦  =  𝑥 )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) | 
						
							| 51 | 50 | negeqd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  ∧  𝑦  =  𝑥 )  →  - ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  =  - ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) | 
						
							| 52 | 43 | renegcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  - ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 53 | 48 51 42 52 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( 𝑦  ∈  𝐸  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑦 ) ) ‘ 𝑥 )  =  - ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) | 
						
							| 54 | 47 53 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( ℝ  D  ( 𝑦  ∈  𝐸  ↦  - ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑥 )  =  - ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) | 
						
							| 55 | 45 54 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  0  ≤  ( ( ℝ  D  ( 𝑦  ∈  𝐸  ↦  - ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑥 ) ) | 
						
							| 56 | 1 2 3 10 36 6 55 | fdvposle | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐸  ↦  - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐴 )  ≤  ( ( 𝑦  ∈  𝐸  ↦  - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐵 ) ) | 
						
							| 57 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐸  ↦  - ( 𝐹 ‘ 𝑦 ) )  =  ( 𝑦  ∈  𝐸  ↦  - ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 58 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  =  𝐴 )  →  𝑦  =  𝐴 ) | 
						
							| 59 | 58 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑦  =  𝐴 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 60 | 59 | negeqd | ⊢ ( ( 𝜑  ∧  𝑦  =  𝐴 )  →  - ( 𝐹 ‘ 𝑦 )  =  - ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 61 | 4 2 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 62 | 61 | renegcld | ⊢ ( 𝜑  →  - ( 𝐹 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 63 | 57 60 2 62 | fvmptd | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐸  ↦  - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐴 )  =  - ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 64 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  =  𝐵 )  →  𝑦  =  𝐵 ) | 
						
							| 65 | 64 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑦  =  𝐵 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 66 | 65 | negeqd | ⊢ ( ( 𝜑  ∧  𝑦  =  𝐵 )  →  - ( 𝐹 ‘ 𝑦 )  =  - ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 67 | 4 3 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 68 | 67 | renegcld | ⊢ ( 𝜑  →  - ( 𝐹 ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 69 | 57 66 3 68 | fvmptd | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐸  ↦  - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐵 )  =  - ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 70 | 56 63 69 | 3brtr3d | ⊢ ( 𝜑  →  - ( 𝐹 ‘ 𝐴 )  ≤  - ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 71 | 67 61 | lenegd | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐵 )  ≤  ( 𝐹 ‘ 𝐴 )  ↔  - ( 𝐹 ‘ 𝐴 )  ≤  - ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 72 | 70 71 | mpbird | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐵 )  ≤  ( 𝐹 ‘ 𝐴 ) ) |