| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fdvposlt.d |  |-  E = ( C (,) D ) | 
						
							| 2 |  | fdvposlt.a |  |-  ( ph -> A e. E ) | 
						
							| 3 |  | fdvposlt.b |  |-  ( ph -> B e. E ) | 
						
							| 4 |  | fdvposlt.f |  |-  ( ph -> F : E --> RR ) | 
						
							| 5 |  | fdvposlt.c |  |-  ( ph -> ( RR _D F ) e. ( E -cn-> RR ) ) | 
						
							| 6 |  | fdvnegge.le |  |-  ( ph -> A <_ B ) | 
						
							| 7 |  | fdvnegge.1 |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) <_ 0 ) | 
						
							| 8 | 4 | ffvelcdmda |  |-  ( ( ph /\ y e. E ) -> ( F ` y ) e. RR ) | 
						
							| 9 | 8 | renegcld |  |-  ( ( ph /\ y e. E ) -> -u ( F ` y ) e. RR ) | 
						
							| 10 | 9 | fmpttd |  |-  ( ph -> ( y e. E |-> -u ( F ` y ) ) : E --> RR ) | 
						
							| 11 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 12 | 11 | a1i |  |-  ( ph -> RR e. { RR , CC } ) | 
						
							| 13 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 14 | 13 8 | sselid |  |-  ( ( ph /\ y e. E ) -> ( F ` y ) e. CC ) | 
						
							| 15 |  | fvexd |  |-  ( ( ph /\ y e. E ) -> ( ( RR _D F ) ` y ) e. _V ) | 
						
							| 16 | 4 | feqmptd |  |-  ( ph -> F = ( y e. E |-> ( F ` y ) ) ) | 
						
							| 17 | 16 | oveq2d |  |-  ( ph -> ( RR _D F ) = ( RR _D ( y e. E |-> ( F ` y ) ) ) ) | 
						
							| 18 |  | cncff |  |-  ( ( RR _D F ) e. ( E -cn-> RR ) -> ( RR _D F ) : E --> RR ) | 
						
							| 19 | 5 18 | syl |  |-  ( ph -> ( RR _D F ) : E --> RR ) | 
						
							| 20 | 19 | feqmptd |  |-  ( ph -> ( RR _D F ) = ( y e. E |-> ( ( RR _D F ) ` y ) ) ) | 
						
							| 21 | 17 20 | eqtr3d |  |-  ( ph -> ( RR _D ( y e. E |-> ( F ` y ) ) ) = ( y e. E |-> ( ( RR _D F ) ` y ) ) ) | 
						
							| 22 | 12 14 15 21 | dvmptneg |  |-  ( ph -> ( RR _D ( y e. E |-> -u ( F ` y ) ) ) = ( y e. E |-> -u ( ( RR _D F ) ` y ) ) ) | 
						
							| 23 | 19 | ffvelcdmda |  |-  ( ( ph /\ y e. E ) -> ( ( RR _D F ) ` y ) e. RR ) | 
						
							| 24 | 23 | renegcld |  |-  ( ( ph /\ y e. E ) -> -u ( ( RR _D F ) ` y ) e. RR ) | 
						
							| 25 | 24 | fmpttd |  |-  ( ph -> ( y e. E |-> -u ( ( RR _D F ) ` y ) ) : E --> RR ) | 
						
							| 26 |  | ssid |  |-  CC C_ CC | 
						
							| 27 |  | cncfss |  |-  ( ( RR C_ CC /\ CC C_ CC ) -> ( E -cn-> RR ) C_ ( E -cn-> CC ) ) | 
						
							| 28 | 13 26 27 | mp2an |  |-  ( E -cn-> RR ) C_ ( E -cn-> CC ) | 
						
							| 29 | 28 5 | sselid |  |-  ( ph -> ( RR _D F ) e. ( E -cn-> CC ) ) | 
						
							| 30 |  | eqid |  |-  ( y e. E |-> -u ( ( RR _D F ) ` y ) ) = ( y e. E |-> -u ( ( RR _D F ) ` y ) ) | 
						
							| 31 | 30 | negfcncf |  |-  ( ( RR _D F ) e. ( E -cn-> CC ) -> ( y e. E |-> -u ( ( RR _D F ) ` y ) ) e. ( E -cn-> CC ) ) | 
						
							| 32 | 29 31 | syl |  |-  ( ph -> ( y e. E |-> -u ( ( RR _D F ) ` y ) ) e. ( E -cn-> CC ) ) | 
						
							| 33 |  | cncfcdm |  |-  ( ( RR C_ CC /\ ( y e. E |-> -u ( ( RR _D F ) ` y ) ) e. ( E -cn-> CC ) ) -> ( ( y e. E |-> -u ( ( RR _D F ) ` y ) ) e. ( E -cn-> RR ) <-> ( y e. E |-> -u ( ( RR _D F ) ` y ) ) : E --> RR ) ) | 
						
							| 34 | 13 32 33 | sylancr |  |-  ( ph -> ( ( y e. E |-> -u ( ( RR _D F ) ` y ) ) e. ( E -cn-> RR ) <-> ( y e. E |-> -u ( ( RR _D F ) ` y ) ) : E --> RR ) ) | 
						
							| 35 | 25 34 | mpbird |  |-  ( ph -> ( y e. E |-> -u ( ( RR _D F ) ` y ) ) e. ( E -cn-> RR ) ) | 
						
							| 36 | 22 35 | eqeltrd |  |-  ( ph -> ( RR _D ( y e. E |-> -u ( F ` y ) ) ) e. ( E -cn-> RR ) ) | 
						
							| 37 | 19 | adantr |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> ( RR _D F ) : E --> RR ) | 
						
							| 38 |  | ioossicc |  |-  ( A (,) B ) C_ ( A [,] B ) | 
						
							| 39 | 38 | a1i |  |-  ( ph -> ( A (,) B ) C_ ( A [,] B ) ) | 
						
							| 40 | 1 2 3 | fct2relem |  |-  ( ph -> ( A [,] B ) C_ E ) | 
						
							| 41 | 39 40 | sstrd |  |-  ( ph -> ( A (,) B ) C_ E ) | 
						
							| 42 | 41 | sselda |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> x e. E ) | 
						
							| 43 | 37 42 | ffvelcdmd |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. RR ) | 
						
							| 44 | 43 | le0neg1d |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( RR _D F ) ` x ) <_ 0 <-> 0 <_ -u ( ( RR _D F ) ` x ) ) ) | 
						
							| 45 | 7 44 | mpbid |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> 0 <_ -u ( ( RR _D F ) ` x ) ) | 
						
							| 46 | 22 | adantr |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> ( RR _D ( y e. E |-> -u ( F ` y ) ) ) = ( y e. E |-> -u ( ( RR _D F ) ` y ) ) ) | 
						
							| 47 | 46 | fveq1d |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D ( y e. E |-> -u ( F ` y ) ) ) ` x ) = ( ( y e. E |-> -u ( ( RR _D F ) ` y ) ) ` x ) ) | 
						
							| 48 | 30 | a1i |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> ( y e. E |-> -u ( ( RR _D F ) ` y ) ) = ( y e. E |-> -u ( ( RR _D F ) ` y ) ) ) | 
						
							| 49 |  | simpr |  |-  ( ( ( ph /\ x e. ( A (,) B ) ) /\ y = x ) -> y = x ) | 
						
							| 50 | 49 | fveq2d |  |-  ( ( ( ph /\ x e. ( A (,) B ) ) /\ y = x ) -> ( ( RR _D F ) ` y ) = ( ( RR _D F ) ` x ) ) | 
						
							| 51 | 50 | negeqd |  |-  ( ( ( ph /\ x e. ( A (,) B ) ) /\ y = x ) -> -u ( ( RR _D F ) ` y ) = -u ( ( RR _D F ) ` x ) ) | 
						
							| 52 | 43 | renegcld |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> -u ( ( RR _D F ) ` x ) e. RR ) | 
						
							| 53 | 48 51 42 52 | fvmptd |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> ( ( y e. E |-> -u ( ( RR _D F ) ` y ) ) ` x ) = -u ( ( RR _D F ) ` x ) ) | 
						
							| 54 | 47 53 | eqtrd |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D ( y e. E |-> -u ( F ` y ) ) ) ` x ) = -u ( ( RR _D F ) ` x ) ) | 
						
							| 55 | 45 54 | breqtrrd |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> 0 <_ ( ( RR _D ( y e. E |-> -u ( F ` y ) ) ) ` x ) ) | 
						
							| 56 | 1 2 3 10 36 6 55 | fdvposle |  |-  ( ph -> ( ( y e. E |-> -u ( F ` y ) ) ` A ) <_ ( ( y e. E |-> -u ( F ` y ) ) ` B ) ) | 
						
							| 57 |  | eqidd |  |-  ( ph -> ( y e. E |-> -u ( F ` y ) ) = ( y e. E |-> -u ( F ` y ) ) ) | 
						
							| 58 |  | simpr |  |-  ( ( ph /\ y = A ) -> y = A ) | 
						
							| 59 | 58 | fveq2d |  |-  ( ( ph /\ y = A ) -> ( F ` y ) = ( F ` A ) ) | 
						
							| 60 | 59 | negeqd |  |-  ( ( ph /\ y = A ) -> -u ( F ` y ) = -u ( F ` A ) ) | 
						
							| 61 | 4 2 | ffvelcdmd |  |-  ( ph -> ( F ` A ) e. RR ) | 
						
							| 62 | 61 | renegcld |  |-  ( ph -> -u ( F ` A ) e. RR ) | 
						
							| 63 | 57 60 2 62 | fvmptd |  |-  ( ph -> ( ( y e. E |-> -u ( F ` y ) ) ` A ) = -u ( F ` A ) ) | 
						
							| 64 |  | simpr |  |-  ( ( ph /\ y = B ) -> y = B ) | 
						
							| 65 | 64 | fveq2d |  |-  ( ( ph /\ y = B ) -> ( F ` y ) = ( F ` B ) ) | 
						
							| 66 | 65 | negeqd |  |-  ( ( ph /\ y = B ) -> -u ( F ` y ) = -u ( F ` B ) ) | 
						
							| 67 | 4 3 | ffvelcdmd |  |-  ( ph -> ( F ` B ) e. RR ) | 
						
							| 68 | 67 | renegcld |  |-  ( ph -> -u ( F ` B ) e. RR ) | 
						
							| 69 | 57 66 3 68 | fvmptd |  |-  ( ph -> ( ( y e. E |-> -u ( F ` y ) ) ` B ) = -u ( F ` B ) ) | 
						
							| 70 | 56 63 69 | 3brtr3d |  |-  ( ph -> -u ( F ` A ) <_ -u ( F ` B ) ) | 
						
							| 71 | 67 61 | lenegd |  |-  ( ph -> ( ( F ` B ) <_ ( F ` A ) <-> -u ( F ` A ) <_ -u ( F ` B ) ) ) | 
						
							| 72 | 70 71 | mpbird |  |-  ( ph -> ( F ` B ) <_ ( F ` A ) ) |