Step |
Hyp |
Ref |
Expression |
1 |
|
fdvposlt.d |
|- E = ( C (,) D ) |
2 |
|
fdvposlt.a |
|- ( ph -> A e. E ) |
3 |
|
fdvposlt.b |
|- ( ph -> B e. E ) |
4 |
|
fdvposlt.f |
|- ( ph -> F : E --> RR ) |
5 |
|
fdvposlt.c |
|- ( ph -> ( RR _D F ) e. ( E -cn-> RR ) ) |
6 |
|
fdvposle.le |
|- ( ph -> A <_ B ) |
7 |
|
fdvposle.1 |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 <_ ( ( RR _D F ) ` x ) ) |
8 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
9 |
8
|
a1i |
|- ( ph -> ( A (,) B ) C_ ( A [,] B ) ) |
10 |
|
ioombl |
|- ( A (,) B ) e. dom vol |
11 |
10
|
a1i |
|- ( ph -> ( A (,) B ) e. dom vol ) |
12 |
|
cncff |
|- ( ( RR _D F ) e. ( E -cn-> RR ) -> ( RR _D F ) : E --> RR ) |
13 |
5 12
|
syl |
|- ( ph -> ( RR _D F ) : E --> RR ) |
14 |
13
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( RR _D F ) : E --> RR ) |
15 |
1 2 3
|
fct2relem |
|- ( ph -> ( A [,] B ) C_ E ) |
16 |
15
|
sselda |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. E ) |
17 |
14 16
|
ffvelrnd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( ( RR _D F ) ` x ) e. RR ) |
18 |
|
ioossre |
|- ( C (,) D ) C_ RR |
19 |
1 18
|
eqsstri |
|- E C_ RR |
20 |
19 2
|
sselid |
|- ( ph -> A e. RR ) |
21 |
19 3
|
sselid |
|- ( ph -> B e. RR ) |
22 |
|
ax-resscn |
|- RR C_ CC |
23 |
|
ssid |
|- CC C_ CC |
24 |
|
cncfss |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC ) ) |
25 |
22 23 24
|
mp2an |
|- ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC ) |
26 |
13 15
|
feqresmpt |
|- ( ph -> ( ( RR _D F ) |` ( A [,] B ) ) = ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) ) |
27 |
|
rescncf |
|- ( ( A [,] B ) C_ E -> ( ( RR _D F ) e. ( E -cn-> RR ) -> ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) ) |
28 |
15 5 27
|
sylc |
|- ( ph -> ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
29 |
26 28
|
eqeltrrd |
|- ( ph -> ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
30 |
25 29
|
sselid |
|- ( ph -> ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
31 |
|
cniccibl |
|- ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) e. L^1 ) |
32 |
20 21 30 31
|
syl3anc |
|- ( ph -> ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) e. L^1 ) |
33 |
9 11 17 32
|
iblss |
|- ( ph -> ( x e. ( A (,) B ) |-> ( ( RR _D F ) ` x ) ) e. L^1 ) |
34 |
13
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( RR _D F ) : E --> RR ) |
35 |
9
|
sselda |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A [,] B ) ) |
36 |
35 16
|
syldan |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. E ) |
37 |
34 36
|
ffvelrnd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. RR ) |
38 |
33 37 7
|
itgge0 |
|- ( ph -> 0 <_ S. ( A (,) B ) ( ( RR _D F ) ` x ) _d x ) |
39 |
|
fss |
|- ( ( F : E --> RR /\ RR C_ CC ) -> F : E --> CC ) |
40 |
4 22 39
|
sylancl |
|- ( ph -> F : E --> CC ) |
41 |
|
cncfss |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( E -cn-> RR ) C_ ( E -cn-> CC ) ) |
42 |
22 23 41
|
mp2an |
|- ( E -cn-> RR ) C_ ( E -cn-> CC ) |
43 |
42 5
|
sselid |
|- ( ph -> ( RR _D F ) e. ( E -cn-> CC ) ) |
44 |
1 2 3 6 40 43
|
ftc2re |
|- ( ph -> S. ( A (,) B ) ( ( RR _D F ) ` x ) _d x = ( ( F ` B ) - ( F ` A ) ) ) |
45 |
38 44
|
breqtrd |
|- ( ph -> 0 <_ ( ( F ` B ) - ( F ` A ) ) ) |
46 |
4 3
|
ffvelrnd |
|- ( ph -> ( F ` B ) e. RR ) |
47 |
4 2
|
ffvelrnd |
|- ( ph -> ( F ` A ) e. RR ) |
48 |
46 47
|
subge0d |
|- ( ph -> ( 0 <_ ( ( F ` B ) - ( F ` A ) ) <-> ( F ` A ) <_ ( F ` B ) ) ) |
49 |
45 48
|
mpbid |
|- ( ph -> ( F ` A ) <_ ( F ` B ) ) |