| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fdvposlt.d |  |-  E = ( C (,) D ) | 
						
							| 2 |  | fdvposlt.a |  |-  ( ph -> A e. E ) | 
						
							| 3 |  | fdvposlt.b |  |-  ( ph -> B e. E ) | 
						
							| 4 |  | fdvposlt.f |  |-  ( ph -> F : E --> RR ) | 
						
							| 5 |  | fdvposlt.c |  |-  ( ph -> ( RR _D F ) e. ( E -cn-> RR ) ) | 
						
							| 6 |  | fdvposle.le |  |-  ( ph -> A <_ B ) | 
						
							| 7 |  | fdvposle.1 |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> 0 <_ ( ( RR _D F ) ` x ) ) | 
						
							| 8 |  | ioossicc |  |-  ( A (,) B ) C_ ( A [,] B ) | 
						
							| 9 | 8 | a1i |  |-  ( ph -> ( A (,) B ) C_ ( A [,] B ) ) | 
						
							| 10 |  | ioombl |  |-  ( A (,) B ) e. dom vol | 
						
							| 11 | 10 | a1i |  |-  ( ph -> ( A (,) B ) e. dom vol ) | 
						
							| 12 |  | cncff |  |-  ( ( RR _D F ) e. ( E -cn-> RR ) -> ( RR _D F ) : E --> RR ) | 
						
							| 13 | 5 12 | syl |  |-  ( ph -> ( RR _D F ) : E --> RR ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( RR _D F ) : E --> RR ) | 
						
							| 15 | 1 2 3 | fct2relem |  |-  ( ph -> ( A [,] B ) C_ E ) | 
						
							| 16 | 15 | sselda |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> x e. E ) | 
						
							| 17 | 14 16 | ffvelcdmd |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( ( RR _D F ) ` x ) e. RR ) | 
						
							| 18 |  | ioossre |  |-  ( C (,) D ) C_ RR | 
						
							| 19 | 1 18 | eqsstri |  |-  E C_ RR | 
						
							| 20 | 19 2 | sselid |  |-  ( ph -> A e. RR ) | 
						
							| 21 | 19 3 | sselid |  |-  ( ph -> B e. RR ) | 
						
							| 22 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 23 |  | ssid |  |-  CC C_ CC | 
						
							| 24 |  | cncfss |  |-  ( ( RR C_ CC /\ CC C_ CC ) -> ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 25 | 22 23 24 | mp2an |  |-  ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC ) | 
						
							| 26 | 13 15 | feqresmpt |  |-  ( ph -> ( ( RR _D F ) |` ( A [,] B ) ) = ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) ) | 
						
							| 27 |  | rescncf |  |-  ( ( A [,] B ) C_ E -> ( ( RR _D F ) e. ( E -cn-> RR ) -> ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) ) | 
						
							| 28 | 15 5 27 | sylc |  |-  ( ph -> ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) | 
						
							| 29 | 26 28 | eqeltrrd |  |-  ( ph -> ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) e. ( ( A [,] B ) -cn-> RR ) ) | 
						
							| 30 | 25 29 | sselid |  |-  ( ph -> ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 31 |  | cniccibl |  |-  ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) e. L^1 ) | 
						
							| 32 | 20 21 30 31 | syl3anc |  |-  ( ph -> ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) e. L^1 ) | 
						
							| 33 | 9 11 17 32 | iblss |  |-  ( ph -> ( x e. ( A (,) B ) |-> ( ( RR _D F ) ` x ) ) e. L^1 ) | 
						
							| 34 | 13 | adantr |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> ( RR _D F ) : E --> RR ) | 
						
							| 35 | 9 | sselda |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A [,] B ) ) | 
						
							| 36 | 35 16 | syldan |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> x e. E ) | 
						
							| 37 | 34 36 | ffvelcdmd |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. RR ) | 
						
							| 38 | 33 37 7 | itgge0 |  |-  ( ph -> 0 <_ S. ( A (,) B ) ( ( RR _D F ) ` x ) _d x ) | 
						
							| 39 |  | fss |  |-  ( ( F : E --> RR /\ RR C_ CC ) -> F : E --> CC ) | 
						
							| 40 | 4 22 39 | sylancl |  |-  ( ph -> F : E --> CC ) | 
						
							| 41 |  | cncfss |  |-  ( ( RR C_ CC /\ CC C_ CC ) -> ( E -cn-> RR ) C_ ( E -cn-> CC ) ) | 
						
							| 42 | 22 23 41 | mp2an |  |-  ( E -cn-> RR ) C_ ( E -cn-> CC ) | 
						
							| 43 | 42 5 | sselid |  |-  ( ph -> ( RR _D F ) e. ( E -cn-> CC ) ) | 
						
							| 44 | 1 2 3 6 40 43 | ftc2re |  |-  ( ph -> S. ( A (,) B ) ( ( RR _D F ) ` x ) _d x = ( ( F ` B ) - ( F ` A ) ) ) | 
						
							| 45 | 38 44 | breqtrd |  |-  ( ph -> 0 <_ ( ( F ` B ) - ( F ` A ) ) ) | 
						
							| 46 | 4 3 | ffvelcdmd |  |-  ( ph -> ( F ` B ) e. RR ) | 
						
							| 47 | 4 2 | ffvelcdmd |  |-  ( ph -> ( F ` A ) e. RR ) | 
						
							| 48 | 46 47 | subge0d |  |-  ( ph -> ( 0 <_ ( ( F ` B ) - ( F ` A ) ) <-> ( F ` A ) <_ ( F ` B ) ) ) | 
						
							| 49 | 45 48 | mpbid |  |-  ( ph -> ( F ` A ) <_ ( F ` B ) ) |