| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prodfzo03.1 |
|- ( k = 0 -> D = A ) |
| 2 |
|
prodfzo03.2 |
|- ( k = 1 -> D = B ) |
| 3 |
|
prodfzo03.3 |
|- ( k = 2 -> D = C ) |
| 4 |
|
prodfzo03.a |
|- ( ( ph /\ k e. ( 0 ..^ 3 ) ) -> D e. CC ) |
| 5 |
|
fzodisjsn |
|- ( ( 0 ..^ 2 ) i^i { 2 } ) = (/) |
| 6 |
5
|
a1i |
|- ( ph -> ( ( 0 ..^ 2 ) i^i { 2 } ) = (/) ) |
| 7 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 8 |
7
|
oveq2i |
|- ( 0 ..^ ( 2 + 1 ) ) = ( 0 ..^ 3 ) |
| 9 |
|
2eluzge0 |
|- 2 e. ( ZZ>= ` 0 ) |
| 10 |
|
fzosplitsn |
|- ( 2 e. ( ZZ>= ` 0 ) -> ( 0 ..^ ( 2 + 1 ) ) = ( ( 0 ..^ 2 ) u. { 2 } ) ) |
| 11 |
9 10
|
ax-mp |
|- ( 0 ..^ ( 2 + 1 ) ) = ( ( 0 ..^ 2 ) u. { 2 } ) |
| 12 |
8 11
|
eqtr3i |
|- ( 0 ..^ 3 ) = ( ( 0 ..^ 2 ) u. { 2 } ) |
| 13 |
12
|
a1i |
|- ( ph -> ( 0 ..^ 3 ) = ( ( 0 ..^ 2 ) u. { 2 } ) ) |
| 14 |
|
fzofi |
|- ( 0 ..^ 3 ) e. Fin |
| 15 |
14
|
a1i |
|- ( ph -> ( 0 ..^ 3 ) e. Fin ) |
| 16 |
6 13 15 4
|
fprodsplit |
|- ( ph -> prod_ k e. ( 0 ..^ 3 ) D = ( prod_ k e. ( 0 ..^ 2 ) D x. prod_ k e. { 2 } D ) ) |
| 17 |
|
0ne1 |
|- 0 =/= 1 |
| 18 |
|
disjsn2 |
|- ( 0 =/= 1 -> ( { 0 } i^i { 1 } ) = (/) ) |
| 19 |
17 18
|
mp1i |
|- ( ph -> ( { 0 } i^i { 1 } ) = (/) ) |
| 20 |
|
fzo0to2pr |
|- ( 0 ..^ 2 ) = { 0 , 1 } |
| 21 |
|
df-pr |
|- { 0 , 1 } = ( { 0 } u. { 1 } ) |
| 22 |
20 21
|
eqtri |
|- ( 0 ..^ 2 ) = ( { 0 } u. { 1 } ) |
| 23 |
22
|
a1i |
|- ( ph -> ( 0 ..^ 2 ) = ( { 0 } u. { 1 } ) ) |
| 24 |
|
fzofi |
|- ( 0 ..^ 2 ) e. Fin |
| 25 |
24
|
a1i |
|- ( ph -> ( 0 ..^ 2 ) e. Fin ) |
| 26 |
|
2z |
|- 2 e. ZZ |
| 27 |
|
3z |
|- 3 e. ZZ |
| 28 |
|
2re |
|- 2 e. RR |
| 29 |
|
3re |
|- 3 e. RR |
| 30 |
|
2lt3 |
|- 2 < 3 |
| 31 |
28 29 30
|
ltleii |
|- 2 <_ 3 |
| 32 |
|
eluz2 |
|- ( 3 e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ 3 e. ZZ /\ 2 <_ 3 ) ) |
| 33 |
26 27 31 32
|
mpbir3an |
|- 3 e. ( ZZ>= ` 2 ) |
| 34 |
|
fzoss2 |
|- ( 3 e. ( ZZ>= ` 2 ) -> ( 0 ..^ 2 ) C_ ( 0 ..^ 3 ) ) |
| 35 |
33 34
|
ax-mp |
|- ( 0 ..^ 2 ) C_ ( 0 ..^ 3 ) |
| 36 |
35
|
sseli |
|- ( k e. ( 0 ..^ 2 ) -> k e. ( 0 ..^ 3 ) ) |
| 37 |
36 4
|
sylan2 |
|- ( ( ph /\ k e. ( 0 ..^ 2 ) ) -> D e. CC ) |
| 38 |
19 23 25 37
|
fprodsplit |
|- ( ph -> prod_ k e. ( 0 ..^ 2 ) D = ( prod_ k e. { 0 } D x. prod_ k e. { 1 } D ) ) |
| 39 |
38
|
oveq1d |
|- ( ph -> ( prod_ k e. ( 0 ..^ 2 ) D x. prod_ k e. { 2 } D ) = ( ( prod_ k e. { 0 } D x. prod_ k e. { 1 } D ) x. prod_ k e. { 2 } D ) ) |
| 40 |
16 39
|
eqtrd |
|- ( ph -> prod_ k e. ( 0 ..^ 3 ) D = ( ( prod_ k e. { 0 } D x. prod_ k e. { 1 } D ) x. prod_ k e. { 2 } D ) ) |
| 41 |
|
snfi |
|- { 0 } e. Fin |
| 42 |
41
|
a1i |
|- ( ph -> { 0 } e. Fin ) |
| 43 |
|
velsn |
|- ( k e. { 0 } <-> k = 0 ) |
| 44 |
1
|
adantl |
|- ( ( ph /\ k = 0 ) -> D = A ) |
| 45 |
|
simpr |
|- ( ( ( ph /\ k e. ( 0 ..^ 3 ) ) /\ D = A ) -> D = A ) |
| 46 |
4
|
adantr |
|- ( ( ( ph /\ k e. ( 0 ..^ 3 ) ) /\ D = A ) -> D e. CC ) |
| 47 |
45 46
|
eqeltrrd |
|- ( ( ( ph /\ k e. ( 0 ..^ 3 ) ) /\ D = A ) -> A e. CC ) |
| 48 |
|
c0ex |
|- 0 e. _V |
| 49 |
48
|
tpid1 |
|- 0 e. { 0 , 1 , 2 } |
| 50 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
| 51 |
49 50
|
eleqtrri |
|- 0 e. ( 0 ..^ 3 ) |
| 52 |
|
eqid |
|- A = A |
| 53 |
1
|
eqeq1d |
|- ( k = 0 -> ( D = A <-> A = A ) ) |
| 54 |
53
|
rspcev |
|- ( ( 0 e. ( 0 ..^ 3 ) /\ A = A ) -> E. k e. ( 0 ..^ 3 ) D = A ) |
| 55 |
51 52 54
|
mp2an |
|- E. k e. ( 0 ..^ 3 ) D = A |
| 56 |
55
|
a1i |
|- ( ph -> E. k e. ( 0 ..^ 3 ) D = A ) |
| 57 |
47 56
|
r19.29a |
|- ( ph -> A e. CC ) |
| 58 |
57
|
adantr |
|- ( ( ph /\ k = 0 ) -> A e. CC ) |
| 59 |
44 58
|
eqeltrd |
|- ( ( ph /\ k = 0 ) -> D e. CC ) |
| 60 |
43 59
|
sylan2b |
|- ( ( ph /\ k e. { 0 } ) -> D e. CC ) |
| 61 |
42 60
|
fprodcl |
|- ( ph -> prod_ k e. { 0 } D e. CC ) |
| 62 |
|
snfi |
|- { 1 } e. Fin |
| 63 |
62
|
a1i |
|- ( ph -> { 1 } e. Fin ) |
| 64 |
|
velsn |
|- ( k e. { 1 } <-> k = 1 ) |
| 65 |
2
|
adantl |
|- ( ( ph /\ k = 1 ) -> D = B ) |
| 66 |
|
simpr |
|- ( ( ( ph /\ k e. ( 0 ..^ 3 ) ) /\ D = B ) -> D = B ) |
| 67 |
4
|
adantr |
|- ( ( ( ph /\ k e. ( 0 ..^ 3 ) ) /\ D = B ) -> D e. CC ) |
| 68 |
66 67
|
eqeltrrd |
|- ( ( ( ph /\ k e. ( 0 ..^ 3 ) ) /\ D = B ) -> B e. CC ) |
| 69 |
|
1ex |
|- 1 e. _V |
| 70 |
69
|
tpid2 |
|- 1 e. { 0 , 1 , 2 } |
| 71 |
70 50
|
eleqtrri |
|- 1 e. ( 0 ..^ 3 ) |
| 72 |
|
eqid |
|- B = B |
| 73 |
2
|
eqeq1d |
|- ( k = 1 -> ( D = B <-> B = B ) ) |
| 74 |
73
|
rspcev |
|- ( ( 1 e. ( 0 ..^ 3 ) /\ B = B ) -> E. k e. ( 0 ..^ 3 ) D = B ) |
| 75 |
71 72 74
|
mp2an |
|- E. k e. ( 0 ..^ 3 ) D = B |
| 76 |
75
|
a1i |
|- ( ph -> E. k e. ( 0 ..^ 3 ) D = B ) |
| 77 |
68 76
|
r19.29a |
|- ( ph -> B e. CC ) |
| 78 |
77
|
adantr |
|- ( ( ph /\ k = 1 ) -> B e. CC ) |
| 79 |
65 78
|
eqeltrd |
|- ( ( ph /\ k = 1 ) -> D e. CC ) |
| 80 |
64 79
|
sylan2b |
|- ( ( ph /\ k e. { 1 } ) -> D e. CC ) |
| 81 |
63 80
|
fprodcl |
|- ( ph -> prod_ k e. { 1 } D e. CC ) |
| 82 |
|
snfi |
|- { 2 } e. Fin |
| 83 |
82
|
a1i |
|- ( ph -> { 2 } e. Fin ) |
| 84 |
|
velsn |
|- ( k e. { 2 } <-> k = 2 ) |
| 85 |
3
|
adantl |
|- ( ( ph /\ k = 2 ) -> D = C ) |
| 86 |
|
simpr |
|- ( ( ( ph /\ k e. ( 0 ..^ 3 ) ) /\ D = C ) -> D = C ) |
| 87 |
4
|
adantr |
|- ( ( ( ph /\ k e. ( 0 ..^ 3 ) ) /\ D = C ) -> D e. CC ) |
| 88 |
86 87
|
eqeltrrd |
|- ( ( ( ph /\ k e. ( 0 ..^ 3 ) ) /\ D = C ) -> C e. CC ) |
| 89 |
|
2ex |
|- 2 e. _V |
| 90 |
89
|
tpid3 |
|- 2 e. { 0 , 1 , 2 } |
| 91 |
90 50
|
eleqtrri |
|- 2 e. ( 0 ..^ 3 ) |
| 92 |
|
eqid |
|- C = C |
| 93 |
3
|
eqeq1d |
|- ( k = 2 -> ( D = C <-> C = C ) ) |
| 94 |
93
|
rspcev |
|- ( ( 2 e. ( 0 ..^ 3 ) /\ C = C ) -> E. k e. ( 0 ..^ 3 ) D = C ) |
| 95 |
91 92 94
|
mp2an |
|- E. k e. ( 0 ..^ 3 ) D = C |
| 96 |
95
|
a1i |
|- ( ph -> E. k e. ( 0 ..^ 3 ) D = C ) |
| 97 |
88 96
|
r19.29a |
|- ( ph -> C e. CC ) |
| 98 |
97
|
adantr |
|- ( ( ph /\ k = 2 ) -> C e. CC ) |
| 99 |
85 98
|
eqeltrd |
|- ( ( ph /\ k = 2 ) -> D e. CC ) |
| 100 |
84 99
|
sylan2b |
|- ( ( ph /\ k e. { 2 } ) -> D e. CC ) |
| 101 |
83 100
|
fprodcl |
|- ( ph -> prod_ k e. { 2 } D e. CC ) |
| 102 |
61 81 101
|
mulassd |
|- ( ph -> ( ( prod_ k e. { 0 } D x. prod_ k e. { 1 } D ) x. prod_ k e. { 2 } D ) = ( prod_ k e. { 0 } D x. ( prod_ k e. { 1 } D x. prod_ k e. { 2 } D ) ) ) |
| 103 |
|
0nn0 |
|- 0 e. NN0 |
| 104 |
103
|
a1i |
|- ( ph -> 0 e. NN0 ) |
| 105 |
1
|
prodsn |
|- ( ( 0 e. NN0 /\ A e. CC ) -> prod_ k e. { 0 } D = A ) |
| 106 |
104 57 105
|
syl2anc |
|- ( ph -> prod_ k e. { 0 } D = A ) |
| 107 |
|
1nn0 |
|- 1 e. NN0 |
| 108 |
107
|
a1i |
|- ( ph -> 1 e. NN0 ) |
| 109 |
2
|
prodsn |
|- ( ( 1 e. NN0 /\ B e. CC ) -> prod_ k e. { 1 } D = B ) |
| 110 |
108 77 109
|
syl2anc |
|- ( ph -> prod_ k e. { 1 } D = B ) |
| 111 |
|
2nn0 |
|- 2 e. NN0 |
| 112 |
111
|
a1i |
|- ( ph -> 2 e. NN0 ) |
| 113 |
3
|
prodsn |
|- ( ( 2 e. NN0 /\ C e. CC ) -> prod_ k e. { 2 } D = C ) |
| 114 |
112 97 113
|
syl2anc |
|- ( ph -> prod_ k e. { 2 } D = C ) |
| 115 |
110 114
|
oveq12d |
|- ( ph -> ( prod_ k e. { 1 } D x. prod_ k e. { 2 } D ) = ( B x. C ) ) |
| 116 |
106 115
|
oveq12d |
|- ( ph -> ( prod_ k e. { 0 } D x. ( prod_ k e. { 1 } D x. prod_ k e. { 2 } D ) ) = ( A x. ( B x. C ) ) ) |
| 117 |
40 102 116
|
3eqtrd |
|- ( ph -> prod_ k e. ( 0 ..^ 3 ) D = ( A x. ( B x. C ) ) ) |