Step |
Hyp |
Ref |
Expression |
1 |
|
fulloppc.o |
|- O = ( oppCat ` C ) |
2 |
|
fulloppc.p |
|- P = ( oppCat ` D ) |
3 |
|
ffthoppc.f |
|- ( ph -> F ( ( C Full D ) i^i ( C Faith D ) ) G ) |
4 |
|
brin |
|- ( F ( ( C Full D ) i^i ( C Faith D ) ) G <-> ( F ( C Full D ) G /\ F ( C Faith D ) G ) ) |
5 |
3 4
|
sylib |
|- ( ph -> ( F ( C Full D ) G /\ F ( C Faith D ) G ) ) |
6 |
5
|
simpld |
|- ( ph -> F ( C Full D ) G ) |
7 |
1 2 6
|
fulloppc |
|- ( ph -> F ( O Full P ) tpos G ) |
8 |
5
|
simprd |
|- ( ph -> F ( C Faith D ) G ) |
9 |
1 2 8
|
fthoppc |
|- ( ph -> F ( O Faith P ) tpos G ) |
10 |
|
brin |
|- ( F ( ( O Full P ) i^i ( O Faith P ) ) tpos G <-> ( F ( O Full P ) tpos G /\ F ( O Faith P ) tpos G ) ) |
11 |
7 9 10
|
sylanbrc |
|- ( ph -> F ( ( O Full P ) i^i ( O Faith P ) ) tpos G ) |