Metamath Proof Explorer


Theorem ffthoppc

Description: The opposite functor of a fully faithful functor is also full and faithful. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses fulloppc.o O=oppCatC
fulloppc.p P=oppCatD
ffthoppc.f φFCFullDCFaithDG
Assertion ffthoppc φFOFullPOFaithPtposG

Proof

Step Hyp Ref Expression
1 fulloppc.o O=oppCatC
2 fulloppc.p P=oppCatD
3 ffthoppc.f φFCFullDCFaithDG
4 brin FCFullDCFaithDGFCFullDGFCFaithDG
5 3 4 sylib φFCFullDGFCFaithDG
6 5 simpld φFCFullDG
7 1 2 6 fulloppc φFOFullPtposG
8 5 simprd φFCFaithDG
9 1 2 8 fthoppc φFOFaithPtposG
10 brin FOFullPOFaithPtposGFOFullPtposGFOFaithPtposG
11 7 9 10 sylanbrc φFOFullPOFaithPtposG