Metamath Proof Explorer


Theorem fldc

Description: The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020)

Ref Expression
Hypotheses drhmsubc.c
|- C = ( U i^i DivRing )
drhmsubc.j
|- J = ( r e. C , s e. C |-> ( r RingHom s ) )
fldhmsubc.d
|- D = ( U i^i Field )
fldhmsubc.f
|- F = ( r e. D , s e. D |-> ( r RingHom s ) )
Assertion fldc
|- ( U e. V -> ( ( ( RingCat ` U ) |`cat J ) |`cat F ) e. Cat )

Proof

Step Hyp Ref Expression
1 drhmsubc.c
 |-  C = ( U i^i DivRing )
2 drhmsubc.j
 |-  J = ( r e. C , s e. C |-> ( r RingHom s ) )
3 fldhmsubc.d
 |-  D = ( U i^i Field )
4 fldhmsubc.f
 |-  F = ( r e. D , s e. D |-> ( r RingHom s ) )
5 fvexd
 |-  ( U e. V -> ( RingCat ` U ) e. _V )
6 ovex
 |-  ( r RingHom s ) e. _V
7 2 6 fnmpoi
 |-  J Fn ( C X. C )
8 7 a1i
 |-  ( U e. V -> J Fn ( C X. C ) )
9 4 6 fnmpoi
 |-  F Fn ( D X. D )
10 9 a1i
 |-  ( U e. V -> F Fn ( D X. D ) )
11 inex1g
 |-  ( U e. V -> ( U i^i DivRing ) e. _V )
12 1 11 eqeltrid
 |-  ( U e. V -> C e. _V )
13 df-field
 |-  Field = ( DivRing i^i CRing )
14 inss1
 |-  ( DivRing i^i CRing ) C_ DivRing
15 13 14 eqsstri
 |-  Field C_ DivRing
16 sslin
 |-  ( Field C_ DivRing -> ( U i^i Field ) C_ ( U i^i DivRing ) )
17 15 16 mp1i
 |-  ( U e. V -> ( U i^i Field ) C_ ( U i^i DivRing ) )
18 17 3 1 3sstr4g
 |-  ( U e. V -> D C_ C )
19 5 8 10 12 18 rescabs
 |-  ( U e. V -> ( ( ( RingCat ` U ) |`cat J ) |`cat F ) = ( ( RingCat ` U ) |`cat F ) )
20 1 2 3 4 fldcat
 |-  ( U e. V -> ( ( RingCat ` U ) |`cat F ) e. Cat )
21 19 20 eqeltrd
 |-  ( U e. V -> ( ( ( RingCat ` U ) |`cat J ) |`cat F ) e. Cat )