Metamath Proof Explorer


Theorem fldc

Description: The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020)

Ref Expression
Hypotheses drhmsubc.c C=UDivRing
drhmsubc.j J=rC,sCrRingHoms
fldhmsubc.d D=UField
fldhmsubc.f F=rD,sDrRingHoms
Assertion fldc UVRingCatUcatJcatFCat

Proof

Step Hyp Ref Expression
1 drhmsubc.c C=UDivRing
2 drhmsubc.j J=rC,sCrRingHoms
3 fldhmsubc.d D=UField
4 fldhmsubc.f F=rD,sDrRingHoms
5 fvexd UVRingCatUV
6 ovex rRingHomsV
7 2 6 fnmpoi JFnC×C
8 7 a1i UVJFnC×C
9 4 6 fnmpoi FFnD×D
10 9 a1i UVFFnD×D
11 inex1g UVUDivRingV
12 1 11 eqeltrid UVCV
13 df-field Field=DivRingCRing
14 inss1 DivRingCRingDivRing
15 13 14 eqsstri FieldDivRing
16 sslin FieldDivRingUFieldUDivRing
17 15 16 mp1i UVUFieldUDivRing
18 17 3 1 3sstr4g UVDC
19 5 8 10 12 18 rescabs UVRingCatUcatJcatF=RingCatUcatF
20 1 2 3 4 fldcat UVRingCatUcatFCat
21 19 20 eqeltrd UVRingCatUcatJcatFCat