Metamath Proof Explorer


Theorem fldcat

Description: The restriction of the category of (unital) rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020)

Ref Expression
Hypotheses drhmsubc.c C=UDivRing
drhmsubc.j J=rC,sCrRingHoms
fldhmsubc.d D=UField
fldhmsubc.f F=rD,sDrRingHoms
Assertion fldcat UVRingCatUcatFCat

Proof

Step Hyp Ref Expression
1 drhmsubc.c C=UDivRing
2 drhmsubc.j J=rC,sCrRingHoms
3 fldhmsubc.d D=UField
4 fldhmsubc.f F=rD,sDrRingHoms
5 isfld rFieldrDivRingrCRing
6 crngring rCRingrRing
7 6 adantl rDivRingrCRingrRing
8 5 7 sylbi rFieldrRing
9 8 rgen rFieldrRing
10 9 3 4 sringcat UVRingCatUcatFCat