Metamath Proof Explorer


Theorem fldcat

Description: The restriction of the category of (unital) rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020)

Ref Expression
Hypotheses drhmsubc.c C = U DivRing
drhmsubc.j J = r C , s C r RingHom s
fldhmsubc.d D = U Field
fldhmsubc.f F = r D , s D r RingHom s
Assertion fldcat U V RingCat U cat F Cat

Proof

Step Hyp Ref Expression
1 drhmsubc.c C = U DivRing
2 drhmsubc.j J = r C , s C r RingHom s
3 fldhmsubc.d D = U Field
4 fldhmsubc.f F = r D , s D r RingHom s
5 isfld r Field r DivRing r CRing
6 crngring r CRing r Ring
7 6 adantl r DivRing r CRing r Ring
8 5 7 sylbi r Field r Ring
9 8 rgen r Field r Ring
10 9 3 4 sringcat U V RingCat U cat F Cat