Metamath Proof Explorer


Theorem rescabs

Description: Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017) (Proof shortened by AV, 9-Nov-2024)

Ref Expression
Hypotheses rescabs.c φ C V
rescabs.h φ H Fn S × S
rescabs.j φ J Fn T × T
rescabs.s φ S W
rescabs.t φ T S
Assertion rescabs φ C cat H cat J = C cat J

Proof

Step Hyp Ref Expression
1 rescabs.c φ C V
2 rescabs.h φ H Fn S × S
3 rescabs.j φ J Fn T × T
4 rescabs.s φ S W
5 rescabs.t φ T S
6 eqid C 𝑠 S sSet Hom ndx H cat J = C 𝑠 S sSet Hom ndx H cat J
7 ovexd φ C 𝑠 S sSet Hom ndx H V
8 4 5 ssexd φ T V
9 6 7 8 3 rescval2 φ C 𝑠 S sSet Hom ndx H cat J = C 𝑠 S sSet Hom ndx H 𝑠 T sSet Hom ndx J
10 simpr φ Base C 𝑠 S T Base C 𝑠 S T
11 ovexd φ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H V
12 8 adantr φ Base C 𝑠 S T T V
13 eqid C 𝑠 S sSet Hom ndx H 𝑠 T = C 𝑠 S sSet Hom ndx H 𝑠 T
14 baseid Base = Slot Base ndx
15 slotsbhcdif Base ndx Hom ndx Base ndx comp ndx Hom ndx comp ndx
16 15 simp1i Base ndx Hom ndx
17 14 16 setsnid Base C 𝑠 S = Base C 𝑠 S sSet Hom ndx H
18 13 17 ressid2 Base C 𝑠 S T C 𝑠 S sSet Hom ndx H V T V C 𝑠 S sSet Hom ndx H 𝑠 T = C 𝑠 S sSet Hom ndx H
19 10 11 12 18 syl3anc φ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H 𝑠 T = C 𝑠 S sSet Hom ndx H
20 19 oveq1d φ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H 𝑠 T sSet Hom ndx J = C 𝑠 S sSet Hom ndx H sSet Hom ndx J
21 ovex C 𝑠 S V
22 8 8 xpexd φ T × T V
23 3 22 fnexd φ J V
24 23 adantr φ Base C 𝑠 S T J V
25 setsabs C 𝑠 S V J V C 𝑠 S sSet Hom ndx H sSet Hom ndx J = C 𝑠 S sSet Hom ndx J
26 21 24 25 sylancr φ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H sSet Hom ndx J = C 𝑠 S sSet Hom ndx J
27 eqid C 𝑠 S = C 𝑠 S
28 eqid Base C = Base C
29 27 28 ressbas S W S Base C = Base C 𝑠 S
30 4 29 syl φ S Base C = Base C 𝑠 S
31 30 sseq1d φ S Base C T Base C 𝑠 S T
32 31 biimpar φ Base C 𝑠 S T S Base C T
33 inss2 S Base C Base C
34 33 a1i φ Base C 𝑠 S T S Base C Base C
35 32 34 ssind φ Base C 𝑠 S T S Base C T Base C
36 5 adantr φ Base C 𝑠 S T T S
37 36 ssrind φ Base C 𝑠 S T T Base C S Base C
38 35 37 eqssd φ Base C 𝑠 S T S Base C = T Base C
39 38 oveq2d φ Base C 𝑠 S T C 𝑠 S Base C = C 𝑠 T Base C
40 4 adantr φ Base C 𝑠 S T S W
41 28 ressinbas S W C 𝑠 S = C 𝑠 S Base C
42 40 41 syl φ Base C 𝑠 S T C 𝑠 S = C 𝑠 S Base C
43 28 ressinbas T V C 𝑠 T = C 𝑠 T Base C
44 12 43 syl φ Base C 𝑠 S T C 𝑠 T = C 𝑠 T Base C
45 39 42 44 3eqtr4d φ Base C 𝑠 S T C 𝑠 S = C 𝑠 T
46 45 oveq1d φ Base C 𝑠 S T C 𝑠 S sSet Hom ndx J = C 𝑠 T sSet Hom ndx J
47 20 26 46 3eqtrd φ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H 𝑠 T sSet Hom ndx J = C 𝑠 T sSet Hom ndx J
48 simpr φ ¬ Base C 𝑠 S T ¬ Base C 𝑠 S T
49 ovexd φ ¬ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H V
50 8 adantr φ ¬ Base C 𝑠 S T T V
51 13 17 ressval2 ¬ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H V T V C 𝑠 S sSet Hom ndx H 𝑠 T = C 𝑠 S sSet Hom ndx H sSet Base ndx T Base C 𝑠 S
52 48 49 50 51 syl3anc φ ¬ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H 𝑠 T = C 𝑠 S sSet Hom ndx H sSet Base ndx T Base C 𝑠 S
53 ovexd φ ¬ Base C 𝑠 S T C 𝑠 S V
54 16 necomi Hom ndx Base ndx
55 54 a1i φ ¬ Base C 𝑠 S T Hom ndx Base ndx
56 4 4 xpexd φ S × S V
57 2 56 fnexd φ H V
58 57 adantr φ ¬ Base C 𝑠 S T H V
59 fvex Base C 𝑠 S V
60 59 inex2 T Base C 𝑠 S V
61 60 a1i φ ¬ Base C 𝑠 S T T Base C 𝑠 S V
62 fvex Hom ndx V
63 fvex Base ndx V
64 62 63 setscom C 𝑠 S V Hom ndx Base ndx H V T Base C 𝑠 S V C 𝑠 S sSet Hom ndx H sSet Base ndx T Base C 𝑠 S = C 𝑠 S sSet Base ndx T Base C 𝑠 S sSet Hom ndx H
65 53 55 58 61 64 syl22anc φ ¬ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H sSet Base ndx T Base C 𝑠 S = C 𝑠 S sSet Base ndx T Base C 𝑠 S sSet Hom ndx H
66 eqid C 𝑠 S 𝑠 T = C 𝑠 S 𝑠 T
67 eqid Base C 𝑠 S = Base C 𝑠 S
68 66 67 ressval2 ¬ Base C 𝑠 S T C 𝑠 S V T V C 𝑠 S 𝑠 T = C 𝑠 S sSet Base ndx T Base C 𝑠 S
69 48 53 50 68 syl3anc φ ¬ Base C 𝑠 S T C 𝑠 S 𝑠 T = C 𝑠 S sSet Base ndx T Base C 𝑠 S
70 5 adantr φ ¬ Base C 𝑠 S T T S
71 ressabs S W T S C 𝑠 S 𝑠 T = C 𝑠 T
72 4 70 71 syl2an2r φ ¬ Base C 𝑠 S T C 𝑠 S 𝑠 T = C 𝑠 T
73 69 72 eqtr3d φ ¬ Base C 𝑠 S T C 𝑠 S sSet Base ndx T Base C 𝑠 S = C 𝑠 T
74 73 oveq1d φ ¬ Base C 𝑠 S T C 𝑠 S sSet Base ndx T Base C 𝑠 S sSet Hom ndx H = C 𝑠 T sSet Hom ndx H
75 52 65 74 3eqtrd φ ¬ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H 𝑠 T = C 𝑠 T sSet Hom ndx H
76 75 oveq1d φ ¬ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H 𝑠 T sSet Hom ndx J = C 𝑠 T sSet Hom ndx H sSet Hom ndx J
77 ovex C 𝑠 T V
78 23 adantr φ ¬ Base C 𝑠 S T J V
79 setsabs C 𝑠 T V J V C 𝑠 T sSet Hom ndx H sSet Hom ndx J = C 𝑠 T sSet Hom ndx J
80 77 78 79 sylancr φ ¬ Base C 𝑠 S T C 𝑠 T sSet Hom ndx H sSet Hom ndx J = C 𝑠 T sSet Hom ndx J
81 76 80 eqtrd φ ¬ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H 𝑠 T sSet Hom ndx J = C 𝑠 T sSet Hom ndx J
82 47 81 pm2.61dan φ C 𝑠 S sSet Hom ndx H 𝑠 T sSet Hom ndx J = C 𝑠 T sSet Hom ndx J
83 9 82 eqtrd φ C 𝑠 S sSet Hom ndx H cat J = C 𝑠 T sSet Hom ndx J
84 eqid C cat H = C cat H
85 84 1 4 2 rescval2 φ C cat H = C 𝑠 S sSet Hom ndx H
86 85 oveq1d φ C cat H cat J = C 𝑠 S sSet Hom ndx H cat J
87 eqid C cat J = C cat J
88 87 1 8 3 rescval2 φ C cat J = C 𝑠 T sSet Hom ndx J
89 83 86 88 3eqtr4d φ C cat H cat J = C cat J