Metamath Proof Explorer


Theorem rescabsOLD

Description: Obsolete proof of seqp1d as of 10-Nov-2024. Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rescabs.c φ C V
rescabs.h φ H Fn S × S
rescabs.j φ J Fn T × T
rescabs.s φ S W
rescabs.t φ T S
Assertion rescabsOLD φ C cat H cat J = C cat J

Proof

Step Hyp Ref Expression
1 rescabs.c φ C V
2 rescabs.h φ H Fn S × S
3 rescabs.j φ J Fn T × T
4 rescabs.s φ S W
5 rescabs.t φ T S
6 eqid C 𝑠 S sSet Hom ndx H cat J = C 𝑠 S sSet Hom ndx H cat J
7 ovexd φ C 𝑠 S sSet Hom ndx H V
8 4 5 ssexd φ T V
9 6 7 8 3 rescval2 φ C 𝑠 S sSet Hom ndx H cat J = C 𝑠 S sSet Hom ndx H 𝑠 T sSet Hom ndx J
10 simpr φ Base C 𝑠 S T Base C 𝑠 S T
11 ovexd φ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H V
12 8 adantr φ Base C 𝑠 S T T V
13 eqid C 𝑠 S sSet Hom ndx H 𝑠 T = C 𝑠 S sSet Hom ndx H 𝑠 T
14 baseid Base = Slot Base ndx
15 1re 1
16 1nn 1
17 4nn0 4 0
18 1nn0 1 0
19 1lt10 1 < 10
20 16 17 18 19 declti 1 < 14
21 15 20 ltneii 1 14
22 basendx Base ndx = 1
23 homndx Hom ndx = 14
24 22 23 neeq12i Base ndx Hom ndx 1 14
25 21 24 mpbir Base ndx Hom ndx
26 14 25 setsnid Base C 𝑠 S = Base C 𝑠 S sSet Hom ndx H
27 13 26 ressid2 Base C 𝑠 S T C 𝑠 S sSet Hom ndx H V T V C 𝑠 S sSet Hom ndx H 𝑠 T = C 𝑠 S sSet Hom ndx H
28 10 11 12 27 syl3anc φ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H 𝑠 T = C 𝑠 S sSet Hom ndx H
29 28 oveq1d φ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H 𝑠 T sSet Hom ndx J = C 𝑠 S sSet Hom ndx H sSet Hom ndx J
30 ovex C 𝑠 S V
31 8 8 xpexd φ T × T V
32 fnex J Fn T × T T × T V J V
33 3 31 32 syl2anc φ J V
34 33 adantr φ Base C 𝑠 S T J V
35 setsabs C 𝑠 S V J V C 𝑠 S sSet Hom ndx H sSet Hom ndx J = C 𝑠 S sSet Hom ndx J
36 30 34 35 sylancr φ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H sSet Hom ndx J = C 𝑠 S sSet Hom ndx J
37 eqid C 𝑠 S = C 𝑠 S
38 eqid Base C = Base C
39 37 38 ressbas S W S Base C = Base C 𝑠 S
40 4 39 syl φ S Base C = Base C 𝑠 S
41 40 sseq1d φ S Base C T Base C 𝑠 S T
42 41 biimpar φ Base C 𝑠 S T S Base C T
43 inss2 S Base C Base C
44 43 a1i φ Base C 𝑠 S T S Base C Base C
45 42 44 ssind φ Base C 𝑠 S T S Base C T Base C
46 5 adantr φ Base C 𝑠 S T T S
47 46 ssrind φ Base C 𝑠 S T T Base C S Base C
48 45 47 eqssd φ Base C 𝑠 S T S Base C = T Base C
49 48 oveq2d φ Base C 𝑠 S T C 𝑠 S Base C = C 𝑠 T Base C
50 4 adantr φ Base C 𝑠 S T S W
51 38 ressinbas S W C 𝑠 S = C 𝑠 S Base C
52 50 51 syl φ Base C 𝑠 S T C 𝑠 S = C 𝑠 S Base C
53 38 ressinbas T V C 𝑠 T = C 𝑠 T Base C
54 12 53 syl φ Base C 𝑠 S T C 𝑠 T = C 𝑠 T Base C
55 49 52 54 3eqtr4d φ Base C 𝑠 S T C 𝑠 S = C 𝑠 T
56 55 oveq1d φ Base C 𝑠 S T C 𝑠 S sSet Hom ndx J = C 𝑠 T sSet Hom ndx J
57 29 36 56 3eqtrd φ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H 𝑠 T sSet Hom ndx J = C 𝑠 T sSet Hom ndx J
58 simpr φ ¬ Base C 𝑠 S T ¬ Base C 𝑠 S T
59 ovexd φ ¬ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H V
60 8 adantr φ ¬ Base C 𝑠 S T T V
61 13 26 ressval2 ¬ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H V T V C 𝑠 S sSet Hom ndx H 𝑠 T = C 𝑠 S sSet Hom ndx H sSet Base ndx T Base C 𝑠 S
62 58 59 60 61 syl3anc φ ¬ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H 𝑠 T = C 𝑠 S sSet Hom ndx H sSet Base ndx T Base C 𝑠 S
63 ovexd φ ¬ Base C 𝑠 S T C 𝑠 S V
64 25 necomi Hom ndx Base ndx
65 64 a1i φ ¬ Base C 𝑠 S T Hom ndx Base ndx
66 4 4 xpexd φ S × S V
67 fnex H Fn S × S S × S V H V
68 2 66 67 syl2anc φ H V
69 68 adantr φ ¬ Base C 𝑠 S T H V
70 fvex Base C 𝑠 S V
71 70 inex2 T Base C 𝑠 S V
72 71 a1i φ ¬ Base C 𝑠 S T T Base C 𝑠 S V
73 fvex Hom ndx V
74 fvex Base ndx V
75 73 74 setscom C 𝑠 S V Hom ndx Base ndx H V T Base C 𝑠 S V C 𝑠 S sSet Hom ndx H sSet Base ndx T Base C 𝑠 S = C 𝑠 S sSet Base ndx T Base C 𝑠 S sSet Hom ndx H
76 63 65 69 72 75 syl22anc φ ¬ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H sSet Base ndx T Base C 𝑠 S = C 𝑠 S sSet Base ndx T Base C 𝑠 S sSet Hom ndx H
77 eqid C 𝑠 S 𝑠 T = C 𝑠 S 𝑠 T
78 eqid Base C 𝑠 S = Base C 𝑠 S
79 77 78 ressval2 ¬ Base C 𝑠 S T C 𝑠 S V T V C 𝑠 S 𝑠 T = C 𝑠 S sSet Base ndx T Base C 𝑠 S
80 58 63 60 79 syl3anc φ ¬ Base C 𝑠 S T C 𝑠 S 𝑠 T = C 𝑠 S sSet Base ndx T Base C 𝑠 S
81 4 adantr φ ¬ Base C 𝑠 S T S W
82 5 adantr φ ¬ Base C 𝑠 S T T S
83 ressabs S W T S C 𝑠 S 𝑠 T = C 𝑠 T
84 81 82 83 syl2anc φ ¬ Base C 𝑠 S T C 𝑠 S 𝑠 T = C 𝑠 T
85 80 84 eqtr3d φ ¬ Base C 𝑠 S T C 𝑠 S sSet Base ndx T Base C 𝑠 S = C 𝑠 T
86 85 oveq1d φ ¬ Base C 𝑠 S T C 𝑠 S sSet Base ndx T Base C 𝑠 S sSet Hom ndx H = C 𝑠 T sSet Hom ndx H
87 62 76 86 3eqtrd φ ¬ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H 𝑠 T = C 𝑠 T sSet Hom ndx H
88 87 oveq1d φ ¬ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H 𝑠 T sSet Hom ndx J = C 𝑠 T sSet Hom ndx H sSet Hom ndx J
89 ovex C 𝑠 T V
90 33 adantr φ ¬ Base C 𝑠 S T J V
91 setsabs C 𝑠 T V J V C 𝑠 T sSet Hom ndx H sSet Hom ndx J = C 𝑠 T sSet Hom ndx J
92 89 90 91 sylancr φ ¬ Base C 𝑠 S T C 𝑠 T sSet Hom ndx H sSet Hom ndx J = C 𝑠 T sSet Hom ndx J
93 88 92 eqtrd φ ¬ Base C 𝑠 S T C 𝑠 S sSet Hom ndx H 𝑠 T sSet Hom ndx J = C 𝑠 T sSet Hom ndx J
94 57 93 pm2.61dan φ C 𝑠 S sSet Hom ndx H 𝑠 T sSet Hom ndx J = C 𝑠 T sSet Hom ndx J
95 9 94 eqtrd φ C 𝑠 S sSet Hom ndx H cat J = C 𝑠 T sSet Hom ndx J
96 eqid C cat H = C cat H
97 96 1 4 2 rescval2 φ C cat H = C 𝑠 S sSet Hom ndx H
98 97 oveq1d φ C cat H cat J = C 𝑠 S sSet Hom ndx H cat J
99 eqid C cat J = C cat J
100 99 1 8 3 rescval2 φ C cat J = C 𝑠 T sSet Hom ndx J
101 95 98 100 3eqtr4d φ C cat H cat J = C cat J