Metamath Proof Explorer


Theorem rescabsOLD

Description: Obsolete proof of seqp1d as of 10-Nov-2024. Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rescabs.c φCV
rescabs.h φHFnS×S
rescabs.j φJFnT×T
rescabs.s φSW
rescabs.t φTS
Assertion rescabsOLD φCcatHcatJ=CcatJ

Proof

Step Hyp Ref Expression
1 rescabs.c φCV
2 rescabs.h φHFnS×S
3 rescabs.j φJFnT×T
4 rescabs.s φSW
5 rescabs.t φTS
6 eqid C𝑠SsSetHomndxHcatJ=C𝑠SsSetHomndxHcatJ
7 ovexd φC𝑠SsSetHomndxHV
8 4 5 ssexd φTV
9 6 7 8 3 rescval2 φC𝑠SsSetHomndxHcatJ=C𝑠SsSetHomndxH𝑠TsSetHomndxJ
10 simpr φBaseC𝑠STBaseC𝑠ST
11 ovexd φBaseC𝑠STC𝑠SsSetHomndxHV
12 8 adantr φBaseC𝑠STTV
13 eqid C𝑠SsSetHomndxH𝑠T=C𝑠SsSetHomndxH𝑠T
14 baseid Base=SlotBasendx
15 1re 1
16 1nn 1
17 4nn0 40
18 1nn0 10
19 1lt10 1<10
20 16 17 18 19 declti 1<14
21 15 20 ltneii 114
22 basendx Basendx=1
23 homndx Homndx=14
24 22 23 neeq12i BasendxHomndx114
25 21 24 mpbir BasendxHomndx
26 14 25 setsnid BaseC𝑠S=BaseC𝑠SsSetHomndxH
27 13 26 ressid2 BaseC𝑠STC𝑠SsSetHomndxHVTVC𝑠SsSetHomndxH𝑠T=C𝑠SsSetHomndxH
28 10 11 12 27 syl3anc φBaseC𝑠STC𝑠SsSetHomndxH𝑠T=C𝑠SsSetHomndxH
29 28 oveq1d φBaseC𝑠STC𝑠SsSetHomndxH𝑠TsSetHomndxJ=C𝑠SsSetHomndxHsSetHomndxJ
30 ovex C𝑠SV
31 8 8 xpexd φT×TV
32 fnex JFnT×TT×TVJV
33 3 31 32 syl2anc φJV
34 33 adantr φBaseC𝑠STJV
35 setsabs C𝑠SVJVC𝑠SsSetHomndxHsSetHomndxJ=C𝑠SsSetHomndxJ
36 30 34 35 sylancr φBaseC𝑠STC𝑠SsSetHomndxHsSetHomndxJ=C𝑠SsSetHomndxJ
37 eqid C𝑠S=C𝑠S
38 eqid BaseC=BaseC
39 37 38 ressbas SWSBaseC=BaseC𝑠S
40 4 39 syl φSBaseC=BaseC𝑠S
41 40 sseq1d φSBaseCTBaseC𝑠ST
42 41 biimpar φBaseC𝑠STSBaseCT
43 inss2 SBaseCBaseC
44 43 a1i φBaseC𝑠STSBaseCBaseC
45 42 44 ssind φBaseC𝑠STSBaseCTBaseC
46 5 adantr φBaseC𝑠STTS
47 46 ssrind φBaseC𝑠STTBaseCSBaseC
48 45 47 eqssd φBaseC𝑠STSBaseC=TBaseC
49 48 oveq2d φBaseC𝑠STC𝑠SBaseC=C𝑠TBaseC
50 4 adantr φBaseC𝑠STSW
51 38 ressinbas SWC𝑠S=C𝑠SBaseC
52 50 51 syl φBaseC𝑠STC𝑠S=C𝑠SBaseC
53 38 ressinbas TVC𝑠T=C𝑠TBaseC
54 12 53 syl φBaseC𝑠STC𝑠T=C𝑠TBaseC
55 49 52 54 3eqtr4d φBaseC𝑠STC𝑠S=C𝑠T
56 55 oveq1d φBaseC𝑠STC𝑠SsSetHomndxJ=C𝑠TsSetHomndxJ
57 29 36 56 3eqtrd φBaseC𝑠STC𝑠SsSetHomndxH𝑠TsSetHomndxJ=C𝑠TsSetHomndxJ
58 simpr φ¬BaseC𝑠ST¬BaseC𝑠ST
59 ovexd φ¬BaseC𝑠STC𝑠SsSetHomndxHV
60 8 adantr φ¬BaseC𝑠STTV
61 13 26 ressval2 ¬BaseC𝑠STC𝑠SsSetHomndxHVTVC𝑠SsSetHomndxH𝑠T=C𝑠SsSetHomndxHsSetBasendxTBaseC𝑠S
62 58 59 60 61 syl3anc φ¬BaseC𝑠STC𝑠SsSetHomndxH𝑠T=C𝑠SsSetHomndxHsSetBasendxTBaseC𝑠S
63 ovexd φ¬BaseC𝑠STC𝑠SV
64 25 necomi HomndxBasendx
65 64 a1i φ¬BaseC𝑠STHomndxBasendx
66 4 4 xpexd φS×SV
67 fnex HFnS×SS×SVHV
68 2 66 67 syl2anc φHV
69 68 adantr φ¬BaseC𝑠STHV
70 fvex BaseC𝑠SV
71 70 inex2 TBaseC𝑠SV
72 71 a1i φ¬BaseC𝑠STTBaseC𝑠SV
73 fvex HomndxV
74 fvex BasendxV
75 73 74 setscom C𝑠SVHomndxBasendxHVTBaseC𝑠SVC𝑠SsSetHomndxHsSetBasendxTBaseC𝑠S=C𝑠SsSetBasendxTBaseC𝑠SsSetHomndxH
76 63 65 69 72 75 syl22anc φ¬BaseC𝑠STC𝑠SsSetHomndxHsSetBasendxTBaseC𝑠S=C𝑠SsSetBasendxTBaseC𝑠SsSetHomndxH
77 eqid C𝑠S𝑠T=C𝑠S𝑠T
78 eqid BaseC𝑠S=BaseC𝑠S
79 77 78 ressval2 ¬BaseC𝑠STC𝑠SVTVC𝑠S𝑠T=C𝑠SsSetBasendxTBaseC𝑠S
80 58 63 60 79 syl3anc φ¬BaseC𝑠STC𝑠S𝑠T=C𝑠SsSetBasendxTBaseC𝑠S
81 4 adantr φ¬BaseC𝑠STSW
82 5 adantr φ¬BaseC𝑠STTS
83 ressabs SWTSC𝑠S𝑠T=C𝑠T
84 81 82 83 syl2anc φ¬BaseC𝑠STC𝑠S𝑠T=C𝑠T
85 80 84 eqtr3d φ¬BaseC𝑠STC𝑠SsSetBasendxTBaseC𝑠S=C𝑠T
86 85 oveq1d φ¬BaseC𝑠STC𝑠SsSetBasendxTBaseC𝑠SsSetHomndxH=C𝑠TsSetHomndxH
87 62 76 86 3eqtrd φ¬BaseC𝑠STC𝑠SsSetHomndxH𝑠T=C𝑠TsSetHomndxH
88 87 oveq1d φ¬BaseC𝑠STC𝑠SsSetHomndxH𝑠TsSetHomndxJ=C𝑠TsSetHomndxHsSetHomndxJ
89 ovex C𝑠TV
90 33 adantr φ¬BaseC𝑠STJV
91 setsabs C𝑠TVJVC𝑠TsSetHomndxHsSetHomndxJ=C𝑠TsSetHomndxJ
92 89 90 91 sylancr φ¬BaseC𝑠STC𝑠TsSetHomndxHsSetHomndxJ=C𝑠TsSetHomndxJ
93 88 92 eqtrd φ¬BaseC𝑠STC𝑠SsSetHomndxH𝑠TsSetHomndxJ=C𝑠TsSetHomndxJ
94 57 93 pm2.61dan φC𝑠SsSetHomndxH𝑠TsSetHomndxJ=C𝑠TsSetHomndxJ
95 9 94 eqtrd φC𝑠SsSetHomndxHcatJ=C𝑠TsSetHomndxJ
96 eqid CcatH=CcatH
97 96 1 4 2 rescval2 φCcatH=C𝑠SsSetHomndxH
98 97 oveq1d φCcatHcatJ=C𝑠SsSetHomndxHcatJ
99 eqid CcatJ=CcatJ
100 99 1 8 3 rescval2 φCcatJ=C𝑠TsSetHomndxJ
101 95 98 100 3eqtr4d φCcatHcatJ=CcatJ