| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rescabs.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑉 ) | 
						
							| 2 |  | rescabs.h | ⊢ ( 𝜑  →  𝐻  Fn  ( 𝑆  ×  𝑆 ) ) | 
						
							| 3 |  | rescabs.j | ⊢ ( 𝜑  →  𝐽  Fn  ( 𝑇  ×  𝑇 ) ) | 
						
							| 4 |  | rescabs.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑊 ) | 
						
							| 5 |  | rescabs.t | ⊢ ( 𝜑  →  𝑇  ⊆  𝑆 ) | 
						
							| 6 |  | eqid | ⊢ ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  ↾cat  𝐽 )  =  ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  ↾cat  𝐽 ) | 
						
							| 7 |  | ovexd | ⊢ ( 𝜑  →  ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  ∈  V ) | 
						
							| 8 | 4 5 | ssexd | ⊢ ( 𝜑  →  𝑇  ∈  V ) | 
						
							| 9 | 6 7 8 3 | rescval2 | ⊢ ( 𝜑  →  ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  ↾cat  𝐽 )  =  ( ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  ↾s  𝑇 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝜑  ∧  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 ) | 
						
							| 11 |  | ovexd | ⊢ ( ( 𝜑  ∧  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  ∈  V ) | 
						
							| 12 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  𝑇  ∈  V ) | 
						
							| 13 |  | eqid | ⊢ ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  ↾s  𝑇 )  =  ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  ↾s  𝑇 ) | 
						
							| 14 |  | baseid | ⊢ Base  =  Slot  ( Base ‘ ndx ) | 
						
							| 15 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 16 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 17 |  | 4nn0 | ⊢ 4  ∈  ℕ0 | 
						
							| 18 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 19 |  | 1lt10 | ⊢ 1  <  ; 1 0 | 
						
							| 20 | 16 17 18 19 | declti | ⊢ 1  <  ; 1 4 | 
						
							| 21 | 15 20 | ltneii | ⊢ 1  ≠  ; 1 4 | 
						
							| 22 |  | basendx | ⊢ ( Base ‘ ndx )  =  1 | 
						
							| 23 |  | homndx | ⊢ ( Hom  ‘ ndx )  =  ; 1 4 | 
						
							| 24 | 22 23 | neeq12i | ⊢ ( ( Base ‘ ndx )  ≠  ( Hom  ‘ ndx )  ↔  1  ≠  ; 1 4 ) | 
						
							| 25 | 21 24 | mpbir | ⊢ ( Base ‘ ndx )  ≠  ( Hom  ‘ ndx ) | 
						
							| 26 | 14 25 | setsnid | ⊢ ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  =  ( Base ‘ ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ) ) | 
						
							| 27 | 13 26 | ressid2 | ⊢ ( ( ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇  ∧  ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  ∈  V  ∧  𝑇  ∈  V )  →  ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  ↾s  𝑇 )  =  ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ) ) | 
						
							| 28 | 10 11 12 27 | syl3anc | ⊢ ( ( 𝜑  ∧  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  ↾s  𝑇 )  =  ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ) ) | 
						
							| 29 | 28 | oveq1d | ⊢ ( ( 𝜑  ∧  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  ↾s  𝑇 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 )  =  ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 ) ) | 
						
							| 30 |  | ovex | ⊢ ( 𝐶  ↾s  𝑆 )  ∈  V | 
						
							| 31 | 8 8 | xpexd | ⊢ ( 𝜑  →  ( 𝑇  ×  𝑇 )  ∈  V ) | 
						
							| 32 |  | fnex | ⊢ ( ( 𝐽  Fn  ( 𝑇  ×  𝑇 )  ∧  ( 𝑇  ×  𝑇 )  ∈  V )  →  𝐽  ∈  V ) | 
						
							| 33 | 3 31 32 | syl2anc | ⊢ ( 𝜑  →  𝐽  ∈  V ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝜑  ∧  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  𝐽  ∈  V ) | 
						
							| 35 |  | setsabs | ⊢ ( ( ( 𝐶  ↾s  𝑆 )  ∈  V  ∧  𝐽  ∈  V )  →  ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 )  =  ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 ) ) | 
						
							| 36 | 30 34 35 | sylancr | ⊢ ( ( 𝜑  ∧  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 )  =  ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 ) ) | 
						
							| 37 |  | eqid | ⊢ ( 𝐶  ↾s  𝑆 )  =  ( 𝐶  ↾s  𝑆 ) | 
						
							| 38 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 39 | 37 38 | ressbas | ⊢ ( 𝑆  ∈  𝑊  →  ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  =  ( Base ‘ ( 𝐶  ↾s  𝑆 ) ) ) | 
						
							| 40 | 4 39 | syl | ⊢ ( 𝜑  →  ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  =  ( Base ‘ ( 𝐶  ↾s  𝑆 ) ) ) | 
						
							| 41 | 40 | sseq1d | ⊢ ( 𝜑  →  ( ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  ⊆  𝑇  ↔  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 ) ) | 
						
							| 42 | 41 | biimpar | ⊢ ( ( 𝜑  ∧  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  ⊆  𝑇 ) | 
						
							| 43 |  | inss2 | ⊢ ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  ⊆  ( Base ‘ 𝐶 ) | 
						
							| 44 | 43 | a1i | ⊢ ( ( 𝜑  ∧  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  ⊆  ( Base ‘ 𝐶 ) ) | 
						
							| 45 | 42 44 | ssind | ⊢ ( ( 𝜑  ∧  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  ⊆  ( 𝑇  ∩  ( Base ‘ 𝐶 ) ) ) | 
						
							| 46 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  𝑇  ⊆  𝑆 ) | 
						
							| 47 | 46 | ssrind | ⊢ ( ( 𝜑  ∧  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( 𝑇  ∩  ( Base ‘ 𝐶 ) )  ⊆  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) | 
						
							| 48 | 45 47 | eqssd | ⊢ ( ( 𝜑  ∧  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  =  ( 𝑇  ∩  ( Base ‘ 𝐶 ) ) ) | 
						
							| 49 | 48 | oveq2d | ⊢ ( ( 𝜑  ∧  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( 𝐶  ↾s  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) )  =  ( 𝐶  ↾s  ( 𝑇  ∩  ( Base ‘ 𝐶 ) ) ) ) | 
						
							| 50 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  𝑆  ∈  𝑊 ) | 
						
							| 51 | 38 | ressinbas | ⊢ ( 𝑆  ∈  𝑊  →  ( 𝐶  ↾s  𝑆 )  =  ( 𝐶  ↾s  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) ) | 
						
							| 52 | 50 51 | syl | ⊢ ( ( 𝜑  ∧  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( 𝐶  ↾s  𝑆 )  =  ( 𝐶  ↾s  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) ) | 
						
							| 53 | 38 | ressinbas | ⊢ ( 𝑇  ∈  V  →  ( 𝐶  ↾s  𝑇 )  =  ( 𝐶  ↾s  ( 𝑇  ∩  ( Base ‘ 𝐶 ) ) ) ) | 
						
							| 54 | 12 53 | syl | ⊢ ( ( 𝜑  ∧  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( 𝐶  ↾s  𝑇 )  =  ( 𝐶  ↾s  ( 𝑇  ∩  ( Base ‘ 𝐶 ) ) ) ) | 
						
							| 55 | 49 52 54 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( 𝐶  ↾s  𝑆 )  =  ( 𝐶  ↾s  𝑇 ) ) | 
						
							| 56 | 55 | oveq1d | ⊢ ( ( 𝜑  ∧  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 )  =  ( ( 𝐶  ↾s  𝑇 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 ) ) | 
						
							| 57 | 29 36 56 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  ↾s  𝑇 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 )  =  ( ( 𝐶  ↾s  𝑇 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 ) ) | 
						
							| 58 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ¬  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 ) | 
						
							| 59 |  | ovexd | ⊢ ( ( 𝜑  ∧  ¬  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  ∈  V ) | 
						
							| 60 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  𝑇  ∈  V ) | 
						
							| 61 | 13 26 | ressval2 | ⊢ ( ( ¬  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇  ∧  ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  ∈  V  ∧  𝑇  ∈  V )  →  ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  ↾s  𝑇 )  =  ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  sSet  〈 ( Base ‘ ndx ) ,  ( 𝑇  ∩  ( Base ‘ ( 𝐶  ↾s  𝑆 ) ) ) 〉 ) ) | 
						
							| 62 | 58 59 60 61 | syl3anc | ⊢ ( ( 𝜑  ∧  ¬  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  ↾s  𝑇 )  =  ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  sSet  〈 ( Base ‘ ndx ) ,  ( 𝑇  ∩  ( Base ‘ ( 𝐶  ↾s  𝑆 ) ) ) 〉 ) ) | 
						
							| 63 |  | ovexd | ⊢ ( ( 𝜑  ∧  ¬  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( 𝐶  ↾s  𝑆 )  ∈  V ) | 
						
							| 64 | 25 | necomi | ⊢ ( Hom  ‘ ndx )  ≠  ( Base ‘ ndx ) | 
						
							| 65 | 64 | a1i | ⊢ ( ( 𝜑  ∧  ¬  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( Hom  ‘ ndx )  ≠  ( Base ‘ ndx ) ) | 
						
							| 66 | 4 4 | xpexd | ⊢ ( 𝜑  →  ( 𝑆  ×  𝑆 )  ∈  V ) | 
						
							| 67 |  | fnex | ⊢ ( ( 𝐻  Fn  ( 𝑆  ×  𝑆 )  ∧  ( 𝑆  ×  𝑆 )  ∈  V )  →  𝐻  ∈  V ) | 
						
							| 68 | 2 66 67 | syl2anc | ⊢ ( 𝜑  →  𝐻  ∈  V ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  𝐻  ∈  V ) | 
						
							| 70 |  | fvex | ⊢ ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ∈  V | 
						
							| 71 | 70 | inex2 | ⊢ ( 𝑇  ∩  ( Base ‘ ( 𝐶  ↾s  𝑆 ) ) )  ∈  V | 
						
							| 72 | 71 | a1i | ⊢ ( ( 𝜑  ∧  ¬  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( 𝑇  ∩  ( Base ‘ ( 𝐶  ↾s  𝑆 ) ) )  ∈  V ) | 
						
							| 73 |  | fvex | ⊢ ( Hom  ‘ ndx )  ∈  V | 
						
							| 74 |  | fvex | ⊢ ( Base ‘ ndx )  ∈  V | 
						
							| 75 | 73 74 | setscom | ⊢ ( ( ( ( 𝐶  ↾s  𝑆 )  ∈  V  ∧  ( Hom  ‘ ndx )  ≠  ( Base ‘ ndx ) )  ∧  ( 𝐻  ∈  V  ∧  ( 𝑇  ∩  ( Base ‘ ( 𝐶  ↾s  𝑆 ) ) )  ∈  V ) )  →  ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  sSet  〈 ( Base ‘ ndx ) ,  ( 𝑇  ∩  ( Base ‘ ( 𝐶  ↾s  𝑆 ) ) ) 〉 )  =  ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Base ‘ ndx ) ,  ( 𝑇  ∩  ( Base ‘ ( 𝐶  ↾s  𝑆 ) ) ) 〉 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ) ) | 
						
							| 76 | 63 65 69 72 75 | syl22anc | ⊢ ( ( 𝜑  ∧  ¬  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  sSet  〈 ( Base ‘ ndx ) ,  ( 𝑇  ∩  ( Base ‘ ( 𝐶  ↾s  𝑆 ) ) ) 〉 )  =  ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Base ‘ ndx ) ,  ( 𝑇  ∩  ( Base ‘ ( 𝐶  ↾s  𝑆 ) ) ) 〉 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ) ) | 
						
							| 77 |  | eqid | ⊢ ( ( 𝐶  ↾s  𝑆 )  ↾s  𝑇 )  =  ( ( 𝐶  ↾s  𝑆 )  ↾s  𝑇 ) | 
						
							| 78 |  | eqid | ⊢ ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  =  ( Base ‘ ( 𝐶  ↾s  𝑆 ) ) | 
						
							| 79 | 77 78 | ressval2 | ⊢ ( ( ¬  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇  ∧  ( 𝐶  ↾s  𝑆 )  ∈  V  ∧  𝑇  ∈  V )  →  ( ( 𝐶  ↾s  𝑆 )  ↾s  𝑇 )  =  ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Base ‘ ndx ) ,  ( 𝑇  ∩  ( Base ‘ ( 𝐶  ↾s  𝑆 ) ) ) 〉 ) ) | 
						
							| 80 | 58 63 60 79 | syl3anc | ⊢ ( ( 𝜑  ∧  ¬  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( ( 𝐶  ↾s  𝑆 )  ↾s  𝑇 )  =  ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Base ‘ ndx ) ,  ( 𝑇  ∩  ( Base ‘ ( 𝐶  ↾s  𝑆 ) ) ) 〉 ) ) | 
						
							| 81 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  𝑆  ∈  𝑊 ) | 
						
							| 82 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  𝑇  ⊆  𝑆 ) | 
						
							| 83 |  | ressabs | ⊢ ( ( 𝑆  ∈  𝑊  ∧  𝑇  ⊆  𝑆 )  →  ( ( 𝐶  ↾s  𝑆 )  ↾s  𝑇 )  =  ( 𝐶  ↾s  𝑇 ) ) | 
						
							| 84 | 81 82 83 | syl2anc | ⊢ ( ( 𝜑  ∧  ¬  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( ( 𝐶  ↾s  𝑆 )  ↾s  𝑇 )  =  ( 𝐶  ↾s  𝑇 ) ) | 
						
							| 85 | 80 84 | eqtr3d | ⊢ ( ( 𝜑  ∧  ¬  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Base ‘ ndx ) ,  ( 𝑇  ∩  ( Base ‘ ( 𝐶  ↾s  𝑆 ) ) ) 〉 )  =  ( 𝐶  ↾s  𝑇 ) ) | 
						
							| 86 | 85 | oveq1d | ⊢ ( ( 𝜑  ∧  ¬  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Base ‘ ndx ) ,  ( 𝑇  ∩  ( Base ‘ ( 𝐶  ↾s  𝑆 ) ) ) 〉 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  =  ( ( 𝐶  ↾s  𝑇 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ) ) | 
						
							| 87 | 62 76 86 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ¬  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  ↾s  𝑇 )  =  ( ( 𝐶  ↾s  𝑇 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ) ) | 
						
							| 88 | 87 | oveq1d | ⊢ ( ( 𝜑  ∧  ¬  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  ↾s  𝑇 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 )  =  ( ( ( 𝐶  ↾s  𝑇 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 ) ) | 
						
							| 89 |  | ovex | ⊢ ( 𝐶  ↾s  𝑇 )  ∈  V | 
						
							| 90 | 33 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  𝐽  ∈  V ) | 
						
							| 91 |  | setsabs | ⊢ ( ( ( 𝐶  ↾s  𝑇 )  ∈  V  ∧  𝐽  ∈  V )  →  ( ( ( 𝐶  ↾s  𝑇 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 )  =  ( ( 𝐶  ↾s  𝑇 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 ) ) | 
						
							| 92 | 89 90 91 | sylancr | ⊢ ( ( 𝜑  ∧  ¬  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( ( ( 𝐶  ↾s  𝑇 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 )  =  ( ( 𝐶  ↾s  𝑇 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 ) ) | 
						
							| 93 | 88 92 | eqtrd | ⊢ ( ( 𝜑  ∧  ¬  ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  ⊆  𝑇 )  →  ( ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  ↾s  𝑇 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 )  =  ( ( 𝐶  ↾s  𝑇 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 ) ) | 
						
							| 94 | 57 93 | pm2.61dan | ⊢ ( 𝜑  →  ( ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  ↾s  𝑇 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 )  =  ( ( 𝐶  ↾s  𝑇 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 ) ) | 
						
							| 95 | 9 94 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  ↾cat  𝐽 )  =  ( ( 𝐶  ↾s  𝑇 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 ) ) | 
						
							| 96 |  | eqid | ⊢ ( 𝐶  ↾cat  𝐻 )  =  ( 𝐶  ↾cat  𝐻 ) | 
						
							| 97 | 96 1 4 2 | rescval2 | ⊢ ( 𝜑  →  ( 𝐶  ↾cat  𝐻 )  =  ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ) ) | 
						
							| 98 | 97 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐶  ↾cat  𝐻 )  ↾cat  𝐽 )  =  ( ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  ↾cat  𝐽 ) ) | 
						
							| 99 |  | eqid | ⊢ ( 𝐶  ↾cat  𝐽 )  =  ( 𝐶  ↾cat  𝐽 ) | 
						
							| 100 | 99 1 8 3 | rescval2 | ⊢ ( 𝜑  →  ( 𝐶  ↾cat  𝐽 )  =  ( ( 𝐶  ↾s  𝑇 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐽 〉 ) ) | 
						
							| 101 | 95 98 100 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( 𝐶  ↾cat  𝐻 )  ↾cat  𝐽 )  =  ( 𝐶  ↾cat  𝐽 ) ) |