Metamath Proof Explorer


Theorem fmfnfmlem1

Description: Lemma for fmfnfm . (Contributed by Jeff Hankins, 18-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Hypotheses fmfnfm.b
|- ( ph -> B e. ( fBas ` Y ) )
fmfnfm.l
|- ( ph -> L e. ( Fil ` X ) )
fmfnfm.f
|- ( ph -> F : Y --> X )
fmfnfm.fm
|- ( ph -> ( ( X FilMap F ) ` B ) C_ L )
Assertion fmfnfmlem1
|- ( ph -> ( s e. ( fi ` B ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) )

Proof

Step Hyp Ref Expression
1 fmfnfm.b
 |-  ( ph -> B e. ( fBas ` Y ) )
2 fmfnfm.l
 |-  ( ph -> L e. ( Fil ` X ) )
3 fmfnfm.f
 |-  ( ph -> F : Y --> X )
4 fmfnfm.fm
 |-  ( ph -> ( ( X FilMap F ) ` B ) C_ L )
5 fbssfi
 |-  ( ( B e. ( fBas ` Y ) /\ s e. ( fi ` B ) ) -> E. w e. B w C_ s )
6 1 5 sylan
 |-  ( ( ph /\ s e. ( fi ` B ) ) -> E. w e. B w C_ s )
7 sstr2
 |-  ( ( F " w ) C_ ( F " s ) -> ( ( F " s ) C_ t -> ( F " w ) C_ t ) )
8 imass2
 |-  ( w C_ s -> ( F " w ) C_ ( F " s ) )
9 7 8 syl11
 |-  ( ( F " s ) C_ t -> ( w C_ s -> ( F " w ) C_ t ) )
10 9 reximdv
 |-  ( ( F " s ) C_ t -> ( E. w e. B w C_ s -> E. w e. B ( F " w ) C_ t ) )
11 6 10 syl5com
 |-  ( ( ph /\ s e. ( fi ` B ) ) -> ( ( F " s ) C_ t -> E. w e. B ( F " w ) C_ t ) )
12 filtop
 |-  ( L e. ( Fil ` X ) -> X e. L )
13 2 12 syl
 |-  ( ph -> X e. L )
14 elfm
 |-  ( ( X e. L /\ B e. ( fBas ` Y ) /\ F : Y --> X ) -> ( t e. ( ( X FilMap F ) ` B ) <-> ( t C_ X /\ E. w e. B ( F " w ) C_ t ) ) )
15 13 1 3 14 syl3anc
 |-  ( ph -> ( t e. ( ( X FilMap F ) ` B ) <-> ( t C_ X /\ E. w e. B ( F " w ) C_ t ) ) )
16 4 sseld
 |-  ( ph -> ( t e. ( ( X FilMap F ) ` B ) -> t e. L ) )
17 15 16 sylbird
 |-  ( ph -> ( ( t C_ X /\ E. w e. B ( F " w ) C_ t ) -> t e. L ) )
18 17 expcomd
 |-  ( ph -> ( E. w e. B ( F " w ) C_ t -> ( t C_ X -> t e. L ) ) )
19 18 adantr
 |-  ( ( ph /\ s e. ( fi ` B ) ) -> ( E. w e. B ( F " w ) C_ t -> ( t C_ X -> t e. L ) ) )
20 11 19 syld
 |-  ( ( ph /\ s e. ( fi ` B ) ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) )
21 20 ex
 |-  ( ph -> ( s e. ( fi ` B ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) )