| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmlaomn0 |  |-  ( x e. _om -> (/) e/ ( Fmla ` x ) ) | 
						
							| 2 |  | df-nel |  |-  ( (/) e/ ( Fmla ` x ) <-> -. (/) e. ( Fmla ` x ) ) | 
						
							| 3 | 1 2 | sylib |  |-  ( x e. _om -> -. (/) e. ( Fmla ` x ) ) | 
						
							| 4 | 3 | nrex |  |-  -. E. x e. _om (/) e. ( Fmla ` x ) | 
						
							| 5 |  | df-nel |  |-  ( (/) e/ ( Fmla ` _om ) <-> -. (/) e. ( Fmla ` _om ) ) | 
						
							| 6 |  | fmla |  |-  ( Fmla ` _om ) = U_ x e. _om ( Fmla ` x ) | 
						
							| 7 | 6 | eleq2i |  |-  ( (/) e. ( Fmla ` _om ) <-> (/) e. U_ x e. _om ( Fmla ` x ) ) | 
						
							| 8 |  | eliun |  |-  ( (/) e. U_ x e. _om ( Fmla ` x ) <-> E. x e. _om (/) e. ( Fmla ` x ) ) | 
						
							| 9 | 7 8 | bitri |  |-  ( (/) e. ( Fmla ` _om ) <-> E. x e. _om (/) e. ( Fmla ` x ) ) | 
						
							| 10 | 5 9 | xchbinx |  |-  ( (/) e/ ( Fmla ` _om ) <-> -. E. x e. _om (/) e. ( Fmla ` x ) ) | 
						
							| 11 | 4 10 | mpbir |  |-  (/) e/ ( Fmla ` _om ) |